Molecular characterization of a 42 kDa subunit pili protein of Salmonella typhi causes typhoid fever




Abstract. Darmawati S, Ethica SN, Prastiyanto ME, Depamede SN, Putri EO, Kamaruddin M. 2022. Molecular characterization of a 42 kDa subunit pili protein of Salmonella typhi causes typhoid fever. Biodiversitas 23: 962-968. Blood culture is the gold standard for diagnosing typhoid fever, but it has limitations such as media and laboratory equipment, specimen volume, and examination time. However, the Academy of Pediatrics does not recommend serology due to its low sensitivity.The purpose of this study was to determine the molecular properties of the protein pilli of Salmonella typhi(S. typhi) that the findings can be used to develop a typhoid fever diagnostic reagent. The SDS-PAGE method was used, as well sequence analysis with ProtParam, ProtScale, and PSIPRED. The SDS-PAGE profile reveals one major protein (42 kDa) and fourteen minor proteins. The pili protein subunit 42 kDa had an amino acid (AA) sequence with a length of 390 AA, according to bioinformatics analysis. According to the ProtParam results, the pili protein subunit 42 kDa has good stability with a value of 40 and is a hydrophilic protein with an average GRAVY value of -0.950. PSIPRED results show that among the secondary structural elements, coil strand predominates, followed by -helix and -strand. It is concluded that this protein is immunogenic and that it can be used to develop a more specific and sensitive diagnostic reagent for typhoid fever.


Ajibola I, Mshelia MB, Gulumbe BH, Eze AA. 2018. Typhoid Fever Diagnosis in Endemic Countries: A Clog in the Wheel of Progress?. Medicina (Kaunas). Apr 25;54(2):23. doi: 10.3390/medicina54020023.
Albert B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular Biology of The Cell. Edisi ke-4. Garland Science: New York.
Álvarez-Fraga. 2016. Analysis of the role of the LH92_11085 gene of a biofilm hyper-producing Acinetobacter baumannii strain on biofilm formation and attachment to eukaryotic cells. Virulence. Taylor & Francis, 7(4), pp. 443–455. doi: 10.1080/21505594.2016.1145335.
Arora P, Thorlund K, Brenner DR, Andrews JR. 2019. Comparative accuracy of typhoid diagnostic tools: A Bayesian latent-class network analysis. PLoS Negl. Trop. Dis. 13, 1–23.
Azmatullah A, Qamar FN, Thaver D, Zaidi AK, Bhutta ZA. 2015. Systematic review of the global epidemiology, clinical and laboratory profile of enteric fever. J. Glob. Health 5.
Buxbaum E. 2007. Fundamentals of Protein Structure and Function, Fundamentals of Protein Structure and Function. doi: 10.1007/978-0-387-68480-2.
Claverie J-M. and Notredame C. 2007.Bioinformatics for dummies. Edited by P. Levesque. Wiley Publishing, Inc.
Darmawati S, Sembiring L, Asmara W, Artama WT. 2015. Identifikasi bakteri batang gram negatif pada darah widal positif berdasarkan karakter fenotipik, in: Universitas Muhammadiyah Semarang. pp. 89–96
Darmawati S, Haribi R. Anwar S. 2012. Analisis Molekuler Profil Protein Pilli untuk Mengungkap Hubungan Similaritas 26 Strain Salmonella typhi Isolat Jawa. Prosiding Seminar Nasional Universitas Muhammadiyah Semarang. ISBN: 978-602-18809-0-6, 14(3), pp. 13–19.
Darmawati S, Ethica SN, Dewi SS. 2019. Protein profile and hemagglutination activity of pilli, an adhesion factor causing typhoid fever by Salmonella typhi. in IOP Conference Series: Earth and Environmental Science. doi: 10.1088/1755-1315/292/1/012049.
Filiz E, Koc I. 2014. In silico sequence analysis and homology modeling of predicted beta-amylase 7-like protein in brachypodium distachyon l. Journal of Bioscience and Biotechnology 3. pp. 61–67.
Gangadhar CG, Rohit BK, Basappa BK. 2016. In silico characterization of beta-galactosidase using computational tools’, Journal of Bioinformatics and Sequence Analysis, 8(1), pp. 1–11. doi: 10.5897/jbsa2015.0101.
Gasteiger E. 2005. Protein Identification and Analysis Tools on the ExPASy Server. In: Walker J.M. (eds) The Proteomics Protocols Handbook. In: Walker. Edited by Springer Protocols Handbooks. Humana Press. doi:
Guruprasad L. 2019. Protein Structure. Resonance, 24(3), pp. 327–338. doi: 10.1007/s12045-019-0783-7.
Jose J, Snyder, J. E. and Kuhn, R. J. (2009) ‘A structural and functional perspective of alphavirus replication and assembly. Future medicine, 4(7), pp. 837–856
Kyte J, Doolittle R F. 1982. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology. doi:
Laemmli U. 1970. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 227, 680–685.
Sivakumar K. 2010. Biocomputation and Biomedical Informatics: Case Studies and Applications. 1st edn. Edited by Athina Lazakidou University of Peloponnese. Medical Information Science
Sivakumar K, Balaji S, Gangaradhakrishnan. 2007. In silico characterization of antifreeze proteins using computational tools and servers. Journal of Chemical Sciences, 119(5), pp. 571–579. doi: 10.1007/s12039-007-0072-y.
Shaw KL, Grimsley GR, Yakovlev GI, Makarov AA, C. Pace CN. 2021. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa. Protein Sci. 10(6): 1206–1215.
Tizard I. 1987. Pengantar Imunologi Veteriner. Terjemahan. Edited by penerjemah : Soehardjo H dan Masduki P. Surabaya: Airlangga Press.
Tran N. 2017. An evaluation of purified Salmonella Typhi protein antigens for the serological diagnosis of acute typhoid fever’, Journal of Infection. Elsevier Ltd, 75(2), pp. 104–114. doi: 10.1016/j.jinf.2017.05.007
Wilkins M. 2008. Protein Identification and Analysis Tools in the ExPASy Server’, in, pp. 531–552. doi: 10.1385/1-59259-584-7:531.

Most read articles by the same author(s)