Antibacterial activity and GC-MS profile of secondary metabolites of Bacillus subtilis subsp. subtilis HSFI-9 associated with Holothuria scabra

##plugins.themes.bootstrap3.article.main##

MAYA DIAN RAKHMAWATIE
NANIK MARFU’ATI
BESTY BARSALIPUTRI
AIDA ZAKIYATUL FIKRIYAH
STALIS NORMA ETHICA

Abstract

Abstract. Rakhmawatie MD, Marfu’ati N, Barsaliputri B, Fikriyah AZ, Ethica SN. 2023. Antibacterial activity and GC-MS profile of secondary metabolites of Bacillus subtilis subsp. subtilis HSFI-9 associated with Holothuria scabra. Biodiversitas 24: 2843-2849. The emergence of resistant bacteria has led to the importance of new antibacterial discovery. Before this research, the marine biota Holothuria scabra found in the Kodek gulf area, West Nusa Tenggara, Indonesia, was explored to isolate Bacillus sp. The present research was conducted to explore Bacillus sp. to produce secondary antibacterial metabolites, by culturing isolate using media containing starch, yeast, and peptone. Ethyl acetate was used for secondary metabolite extraction. Antibacterial activity screening was carried out by two-fold microdilution test to obtain Minimum Inhibitory Concentration (MIC) value. In this study, it was found that the ethyl acetate extract of the strain HSFI-9 can inhibit the growth of Staphylococcus aureus, Extended Spectrum ?-Lactamase (ES?L)-Escherichia coli, and Mycobacterium smegmatis with sequential minimum inhibitory concentrations (MIC) values ??of 3.125; 25; and 50 µg/mL. Based on phylogenetic tree analysis, the strain HSFI-9 show 99.71 similarity with Bacillus subtilis subsp. subtilis. The ethyl acetate extract of Bacillus subtilis subsp. subtilis HSFI-9 metabolomics profile was analyzed using Gas Chromatography-Mass Spectroscopy (GC-MS). It showed five volatile secondary metabolites, with the first dominant compound being (2S, 3S)-(-)-3-propyloxiranemethanol (MW 116, C6H12O2) with an area of ??34.78% (database similarity index of 73.3%). This study concluded that B. subtilis subsp. subtilis HSFI-9 could be further developed as an antibacterial producer.

##plugins.themes.bootstrap3.article.details##

References
Alyousif NA. 2022. Distribution, occurrence and molecular characterization of Bacillus related species isolated from different soil in Basrah Province, Iraq. Biodiversitas. 23:679–686. DOI: https://doi.org/10.13057/biodiv/d230209
Alzaben F, Fat’hi S, Elbehiry A, Alsugair M, Marzouk E, Abalkhail A, Almuzaini AM, Rawway M, Ibrahem M, Sindi W, et al. 2022. Laboratory diagnostic methods and antibiotic resistance patterns of Staphylococcus aureus and Escherichia coli strains: An Evolving Human Health Challenge. Diagnostics. 12:2645.
Arthur PK, Amarh V, Cramer P, Arkaifie GB, Blessie EJS, Fuseini MS, Carilo I, Yeboah R, Asare L, Robertson BD. 2019. Characterization of two new multidrug-resistant strains of Mycobacterium smegmatis: Tools for routine in vitro screening of novel anti-mycobacterial agents. Antibiotics. 8:1–14.
Bonifait L, Marquis A, Genovese S, Epifano F, Grenier D. 2012. Synthesis and antimicrobial activity of geranyloxy- and farnesyloxy-acetophenone derivatives against oral pathogens. Fitoterapia. 83:996–999. DOI: http://dx.doi.org/10.1016/j.fitote.2012.06.003
CLSI. 2020. Performance Standards for Antimicrobial Susceptibility Testing, 30th Edition. CLSI supplement M100. Wayne, Pennsylvania.
Devi S, Kiesewalter HT, Kovács R, Frisvad JC, Weber T, Larsen TO, Kovács ÁT, Ding L. 2019. Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001. Synth Syst Biotechnol. 4:142–149. DOI: https://doi.org/10.1016/j.synbio.2019.08.002
Dunlap CA, Bowman MJ, Zeigler DR. 2020. Promotion of Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 113:1–12. DOI: https://doi.org/10.1007/s10482-019-01354-9
Gomaa OM, Momtaz OA. 2007. 16S rRNA characterization of a Bacillus isolate and its tolerance profile after subsequent subculturing. Arab J Biotech. 10:107–116.
Harwood CR, Mouillon JM, Pohl S, Arnau J. 2018. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev. 42:721–738.
Hidayati N, Nurrahman N, Fuad H, Munandar H, Zilda DS, Ernanto AR, Samiasih A, Oedjijono O, Ethica SN. 2021. Bacillus tequilensis isolated from fermented intestine of Holothuria scabra produces fibrinolytic protease with thrombolysis activity. IOP Conf Ser Earth Environ Sci. 707.
Huang WC, Yu MC, Huang YW. 2020. Identification and drug susceptibility testing for nontuberculous mycobacteria. J Formos Med Assoc. 119:S32–S41. DOI: https://doi.org/10.1016/j.jfma.2020.05.002
Kai M. 2020. Diversity and distribution of volatile secondary metabolites throughout Bacillus subtilis isolates. Front Microbiol. 11:1–21.
Kaspar F, Neubauer P, Gimpel M. 2019. Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. J Nat Prod. 82:2038–2053.
Khan Z, Shafique M, Nawaz HR, Jabeen N, Naz SA. 2019. Bacillus tequilensis ZMS-2: A novel source of alkaline protease with antimicrobial, anti-coagulant, fibrinolytic and dehairing potentials. Pak J Pharm Sci. 32:1913–1918.
KKP. 2017. Status Kehati Laut Biota Prioritas.pdf. Jakarta: Direktorat Konservasi dan Keanekaragaman Hayati Laut.
Lucena-Aguilar G, Sánchez-López AM, Barberán-Aceituno C, Carrillo-Ávila JA, López-Guerrero JA, Aguilar-Quesada R. 2016. DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreserv Biobank. 14:264–270.
Miggiano R, Rizzi M, Ferraris DM. 2020. Mycobacterium tuberculosis pathogenesis, infection prevention and treatment. Pathogens. 9:10–13.
Murniasih T, Masteria Yunovilsa P, Untari F. 2022. Antibacterial activity and GC–MS based metabolite profiles of Indonesian marine Bacillus. Indones J Pharm. 33:475–483.
Nas F, Aissaoui N, Mahjoubi M, Mosbah A, Arab M, Abdelwahed S, Khrouf R, Masmoudi AS, Cherif A, Klouche-Khelil N. 2021. A comparative GC–MS analysis of bioactive secondary metabolites produced by halotolerant Bacillus spp. isolated from the Great Sebkha of Oran. Int Microbiol. 24:455–470. DOI: https://doi.org/10.1007/s10123-021-00185-x
de Oliveira JA, Williams DE, Andersen RJ, Sarragiotto MH, Baldoqui DC. 2020. Pumilacidins A-E from sediment-derived bacterium Bacillus sp. 4040 and their antimicrobial activity evaluation. J Braz Chem Soc. 31:357–363.
Pham J V., Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, et al. 2019. A review of the microbial production of bioactive natural products and biologics. Front Microbiol. 10:1–27.
Rakhmawatie MD, Wibawa T, Lisdiyanti P, Pratiwi WR, Damayanti E, Mustofa. 2021. Potential secondary metabolite from Indonesian Actinobacteria (InaCC A758) against Mycobacterium tuberculosis. Iran J Basic Med Sci. 24:1058–1068.
Rakhmawatie MD, Wibawa T, Lisdiyanti P, Pratiwi WR, Mustofa. 2019. Evaluation of crystal violet decolorization assay and resazurin microplate assay for antimycobacterial screening. Heliyon. 5:1–7.
Raphael E, Glymour MM, Chambers HF. 2021. Trends in prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolated from patients with community- and healthcare-associated bacteriuria: results from 2014 to 2020 in an urban safety-net healthcare system. Antimicrob Resist Infect Control. 10:1–13. DOI: https://doi.org/10.1186/s13756-021-00983-y
Saxena S, Spaink HP, Forn-Cuní G. 2021. Drug resistance in nontuberculous mycobacteria: Mechanisms and models. Biology (Basel). 10:1–22.
Shifa H, Gopalakrishnan C, Velazhahan R. 2015. Characterization of antifungal antibiotics produced by Bacillus subtilis G-1 antagonistic to Sclerotium rolfsii. Biochem Cell Arch. 15:99–104.
Stallfortha P, Clardy J. 2014. Atlas for drug discovery. Proc Natl Acad Sci U S A. 111:3655–3656.
Sugumaran R, David Jocksing P, Yusof NA. 2020. Identification and occurence of antibiotic resistance of Staphylococcus aureus and Escherichia coli isolated from recreational parks around kota Kinabalu, Sabah. Borneo Int J Biotechnol. 1:55–75.
Sulistiyani TR, Kusmiati M, Putri GA. 2021. The 16S rRNA analysis and enzyme screening of Bacillus from rhizosphere soil of Lombok Island. J Ilmu Pertan Indones. 26:582–590.
Tripathi N, Sapra A. 2022. Gram Staining. Treasure Island: StatPearls Publishing.
Ullah I, Khan AL, Ali L, Khan AR, Waqas M, Hussain J, Lee IJ, Shin JH. 2015. Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. J Microbiol. 53:127–133.
Varela MF, Stephen J, Lekshmi M, Ojha M, Wenzel N, Sanford LM, Hernandez AJ, Parvathi A, Kumar SH. 2021. Bacterial resistance to antimicrobial agents. Antibiotics. 10:1–22.
Ventola CL. 2015. The antibiotic resistance crisis. PT. 40:277–283.
Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, Rajoka MSR, Yang H, Jin M. 2017. Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol. 101:5951–5960.

Most read articles by the same author(s)