Antifungal activities of the rhizome extract of five member Zingiberaceae against Candida albicans and Trichophyton rubrum

##plugins.themes.bootstrap3.article.main##

MUHAMMAD EVY PRASTIYANTO
NI’MATUR ROHMAH
LESITA EFENDI
RAHMATIA ARIFIN
FANDHI ADI WARDOYO
WILDIANI WILSON
ANA HIDAYATI MUKAROMAH
SRI SINTO DEWI
SRI DARMAWATI

Abstract

Abstract. Prastiyanto ME, Rohmah N, Efendi L, Arifin R, Wardoyo FA, Wilson W, Mukaromah AH, Dewi SS, Darmawati S. 2021. Antifungal activities of the rhizome extract of five member Zingiberaceae against Candida albicans and Trichophyton rubrum. Biodiversitas 22: 1509-1513. Fungal infections have now become serious health issues. One of the strategies to avoid the problems of fungal infections is by using natural product from plants that are effective against many human pathogenic fungi. The study portrayed the use of the extracts of plant rhizomes as the alternatives to fight against number of human pathogenic fungi. This research aimed to investigate the antifungal activities of crude ethanol extract of five member of the family Zingiberaceae (Curcuma longa, Alpinia galanga Zingiber officinale. var. rubrum, Zingiber officinale var. officinarum and Zingiber officinale var. amarum), which are widely used as folk medicines against Candida albicans and Trichophyton rubrum. Crude ethanol extracts of five members of Zingiberaceae were evaluated for their antifungal activities and the results were calculated based on the zones of inhibition using the diffusion method. The extract showed antifungal activity against Candida. albicans in the agar well diffusion assay (10.2-27.1 mm inhibition diameter) and against T. rubrum (27.3-44.3 mm inhibition diameter). The data have revealed that all rhizomes have the potential to be developed as antifungal agents, particularly against C. albicans and T. rubrum. Studies on the antifungal activity against yeast-like (C. albicans) and filamentous (T. rubrum) can provide new information about the benefits of members Zingiberaceae as a source of natural antifungal. Researchers can select the type of rhizome that has more potential for further extraction to obtain pure compounds that can be used as antifungals.

##plugins.themes.bootstrap3.article.details##

References
Adnan, A., Ahmed, A., 2019. Saudi Journal of Biological Sciences Phytochemical screening and in vitro antibacterial and anticancer activities of the aqueous extract of Cucumis sativus. Saudi J. Biol. Sci. 26, 600–604. https://doi.org/10.1016/j.sjbs.2018.07.012
Akter, J., Hossain, M.A., Sano, A., Takara, K., Islam, M.Z., Hou, D.-X., 2018. Antifungal Activity of Various Species and Strains of Turmeric ( Curcuma SPP .) Against Fusarium Solani Sensu Lato. Pharm. Chem. J. 52, 320–325.
Al-dhabi, N.A., Arasu, M.V., 2016. Quantification of Phytochemicals from Commercial Spirulina Products and Their Antioxidant Activities. Evidence-Based Complement. Altern. Med.
Ashley, E.D., Drew, R., Johnson, M., Danna, R., Dabrowski, D., Walker, V., Prasad, M., Alexander, B., Perfect, G.P.J., 2012. Cost of Invasive Fungal Infections in the Era of New Diagnostics and Expanded Treatment Options. Pharmacotheraphy 32, 890–901.
Boral, H., Metin, B., Dö?en, A., Seyedmousavi, S., Ilkit, M., 2017. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genet. Biol. 111, 92–107. https://doi.org/10.1016/j.fgb.2017.10.008
Brown, G.D., Denning, D.W., Gow, N.A.R., Levitz, S.M., Netea, M.G., White, T.C., 2012. Hidden Killers?: Human Fungal Infections. Sci. Transl. Med. 4. https://doi.org/10.1126/scitranslmed.3004404
Buzzini, P., Vignolini, P., Goretti, M., Turchetti, B., Branda, E., Marchegiani, E., Pinelli, P., Omani, A., 2009. Green Tea Catechins: A Class of Molecules with Antimicrobial Activity Handbook of Green Tea and Health Research. Nova Science Publishers, Inc., New York.
Calandra, T., Roberts, J.A., Antonelli, M., Bassetti, M., Vincent, J., 2016. Diagnosis and management of invasive candidiasis in the ICU?: an updated approach to an old enemy. Crit. Care 20, 125. https://doi.org/10.1186/s13054-016-1313-6
Conti, S., Radicioni, G., Ciociola, T., Longhi, R., Polonelli, L., Gatti, R., Cabras, T., Messana, I., Castagnola, M., Vitali, A., 2013. Biochimica et Biophysica Acta Structural and functional studies on a proline-rich peptide isolated from swine saliva endowed with antifungal activity towards Cryptococcus neoformans. BBA - Biomembr. 1828, 1066–1074. https://doi.org/10.1016/j.bbamem.2012.12.013
Cretton, S., Oyarzún, A., Righi, D., Sahib, L., Kaiser, M., Christen, P., Fajardo, V.., 2017. A new antifungal and antiprotozoal bibenzyl derivative from Gavilea. Nad prod Res 32, 695–701. https://doi.org/10.1080/14786419.2017.1338287
Diniyah, N., Alam, B., Lee, S., 2020. Antioxidant potential of non-oil seed legumes of Indonesian ’ s ethnobotanical extracts. Arab. J. Chem. https://doi.org/10.1016/j.arabjc.2020.02.019
Elango, G., Roopan, S.M., Al-dhabi, N.A., Arasu, M.V., Damodharan, K.I., Elumalai, K., 2016. Cocos nucifera coir-mediated green synthesis of Pd NPs and its investigation against larvae and agricultural pest. J. Mol. Liqu. 223, 1249–1255.
Espino, M., Solari, M., Fernández, de los Á., Boiteux, J., Gómez, M.R., Silva, M.F., 2019. NADES-MEDIATED FOLK PLANT EXTRACTS AS NOVEL ANTIFUNGAL AGENTS AGAINST Candida albicans. J. Pharm. Biomed. Anal. https://doi.org/10.1016/j.jpba.2019.01.026
Gechev, T.S., Hille, J., Woerdenbag, H.J., Benina, M., Mehterov, N., Toneva, V., Fernie, A.R., Mueller-roeber, B., 2014. Natural products from resurrection plants?: Potential for medical applications. Biotechnol. Adv. 32, 1091–1101. https://doi.org/10.1016/j.biotechadv.2014.03.005
Ghafoor, K., Juhaimi, F. Al, Ozcan, M.M., Uslu, N., Babiker, E.E., Ahmed, I.A.M., 2020. Total phenolics , total carotenoids , individual phenolics and antioxidant activity of ginger ( Zingiber officinale ) rhizome as affected by drying methods. LWT 126, 109354.
Ghannoum, M., Isham, N., 2014. Ghannoum M, Isham N (2014) Fungal Nail Infections (Onychomycosis): A Never-Ending Story? PLoS Pathog 10(6): PLoS Pathog 10, e1004105. https://doi.org/. https://doi.org/10.1371/journal.ppat.1004105
Herrera, C.L., Alvear, M., Barrientos, L., Montenegro, G., Salazar, L.A., 2010. The antifungal effect of six commercial extracts of Chilean propolis on Candida spp . 37, 75–84.
Hube, B., Hay, R., Brasch, J., Veraldi, S., Schaller, M., 2015. Dermatomycoses and inflammation?: The adaptive balance between growth , damage , and survival . J mYcol Med 25, 44–58. https://doi.org/10.1016/j.mycmed.2014.11.002
Kader, G., Nikkon, F., Rashid, M.A., Yeasmin, T., 2011. Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn. Asian Pac. J. Trop. Biomed. 1, 409–412. https://doi.org/10.1016/S2221-1691(11)60090-7
Khalid, M., Bilal, M., Dan-feng, H., 2019. ScienceDirect Role of flavonoids in plant interactions with the environment and against human pathogens - A review. J. Integr. Agric. 18, 211–230. https://doi.org/10.1016/S2095-3119(19)62555-4
Kollef, M., Micek, S., Hampton, N., Doherty, J.A., Kumar, A., 2012. Septic Shock Attributed to Candida Infection?: Importance of Empiric Therapy and Source Control. Clin. Infect. Dis. 54, 1739–1746. https://doi.org/10.1093/cid/cis305
Kong, Q.T., Du, X., Yang, R., Huang, S., Sang, H., Liu, W.D., 2015. Chronically recurrent and widespread tinea corporis due to Trichophyton rubrum in an immunocompetent patient . Mycopathologia 179, 293–7. https://doi.org/10.1007/s11046-014-9834-5
Kumar, S., Pandey, A. k., 2013. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 1–16. https://doi.org/http://dx.doi.org/10.1155/2013/162750
Lewis, M.A.., Williams, D.., 2017. Diagnosis and management of oral candidosis. Br. Dent. J. 223, 675–681.
Lortholary, O., Renaudat, C., Sitbon, K., Madec, Y., Denoeud-Ndam, L., Wolff, M., Fontanet, A., Bretagne, S., Dromer, F. oise, 2014. Worrisome trends in incidence and mortality of candidemia in intensive care units (Paris area, 2002-2010). Intensive Care Med 40, 1303–1312. https://doi.org/10.1007/s00134-014-3408-3
Mahomoodally, M.F., Aumeeruddy, M.Z., Rengasamy, K.R.R., Roshan, S., Hammad, S., Pandohee, J., Hu, X., Zengin, G., 2019. Ginger and its active compounds in cancer therapy?: From folk uses to nano- therapeutic applications. Semin. Cancer Biol. 1–10. https://doi.org/10.1016/j.semcancer.2019.08.009
Manh, D., Valan, M., Jeon, J., Ji, Y., Kwon, S., Al-dhabi, N.A., Un, S., 2017. Saudi Journal of Biological Sciences Medically important carotenoids from Momordica charantia and their gene expressions in different organs. Saudi J. Biol. Sci. 24, 1913–1919. https://doi.org/10.1016/j.sjbs.2017.11.039
McManus, B.., Coleman, D.., 2014. Molecular epidemiology , phylogeny and evolution of Candida. Infect Genent Evol 21, 166–78. https://doi.org/10.1016/j.meegid.2013.11.008
Muadcheingka, T., Tantivitayakul, P., Candida, N., 2015. ScienceDirect Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients?: Correlation between cell surface hydrophobicity and biofilm forming activities. Arch. Oral Biol. 60, 894–901. https://doi.org/10.1016/j.archoralbio.2015.03.002
Murugesan, S., Venkateswaran, M.R., Jayabal, S., Periyasamy, S., 2020. South African Journal of Botany Evaluation of the antioxidant and anti-arthritic potential of Zingiber of fi cinale Rosc . by in vitro and in silico analysis. South African J. Bot. 130, 45–53. https://doi.org/10.1016/j.sajb.2019.12.019
Oro, D., Heissler, A., Rossi, E.M., Scapin, D., Malheiros2, P. da S., Boff, E., 2015. Antifungal activity of natural compounds against Candida species isolated from HIV-positive patients. Asian Paci fi c J. Trop. Biomed. 5, 781–784. https://doi.org/10.1016/j.apjtb.2015.07.011
Pathania, S., Rudramurthy, S.M., Narang, T., Saikia, U.N., Dogra, S., 2018. A prospective study of the epidemiological and clinical patterns of recurrent dermatophytosis at a tertiary care hospital in India. Indian J. Dermatol. Venereol. Leprol. 678–684. https://doi.org/.https://doi.org/10.4103/ijdvl.IJDVL_645_17.
Paula, M., Marcela, C., Céliz, G., Daz, M., Liliana, S., 2012. Efficacy of fl avanones obtained from citrus residues to prevent patulin contamination. FRIN 48, 930–934. https://doi.org/10.1016/j.foodres.2012.02.003
Piras, A., Jose, M., Alves, J., Falconieri, D., Porcedda, S., Maxia, A., 2018. Ocimum tenuiflorum L . and Ocimum basilicum L ., two spices of Lamiaceae family with bioactive essential oils. Ind. Crops Prod. 113, 89–97. https://doi.org/https://doi.org/10.1016/j.indcrop.2018.01.024
Prastiyanto, M.E., Tama, P.D., Ananda, N., Wilson, W., Mukaromah, A.H., 2020a. Antibacterial Potential of Jatropha sp . Latex against Multidrug-Resistant Bacteria. Int. J. Microbiol. 2020. https://doi.org/https://doi.org/10.1155/2020/8509650
Prastiyanto, M.E., Wardoyo, F.A., Wilson, W., Darmawati, S., 2020b. Antibacterial Activity of Various Extracts of Averrhoa bilimbi against Multidrug Resistant Bacteria. Biosaintifika 12, 163–168.
Reiss, E., Shadomy, H., III.Lyon GM., 2012. Fundamental medical mycology. John Wiley & Sons, Inc;, New Jersey.
Rudramurthy, S.M., Shankarnarayan, S.A., Dogra, S., Shaw, D., Mushtaq, K., Paul, R.A., 2018. Mutation in the Squalene Epoxidase Gene of Trichophyton interdigitale and Trichophyton rubrum Associated with Allylamine Resistance. Antimicrob. Agents Chemother. 62, e02522-17. https://doi.org/10.1128/AAC.02522-17
Sales, M.D.C., Costa, H.B., Fernandes, P.M.B., Ventura, J.A., Meira, D.D., 2016. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pac. J. Trop. Biomed. 6, 26–31. https://doi.org/10.1016/j.apjtb.2015.09.026
Serpa, R., Franc, E.J.G., Furlaneto-maia, L., Andrade, G.T.J., 2012. In vitro antifungal activity of the flavonoid baicalein against Candida species 1704–1708. https://doi.org/10.1099/jmm.0.047852-0
Siigur, J., Aaspollu, A., Siigur, E., 2019. Biochemistry and pharmacology of proteins and peptides purified from the venoms of the snakes Macrovipera lebetina subspecies. ToxiconVolume 158, 16–32. https://doi.org/10.1016/j.toxicon.2018.11.294
Singh, A., Masih, A., Khurana, A., Pk, S., Gupta, M., Hagen, F., Jf, M., Chowdhary, A., 2018. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi , India harbouring mutations in the squalene epoxidase gene . Mycoses 61, 477–484. https://doi.org/10.1111/myc.12772
Sipriyadi, Lestari, Y., Wahyudi, A.T., Meryandini, A., Thenawidjaja, M., Suhartono, 2016. Exploration of Potential Actinomycetes from CIFOR Forest Origin as Antimicrobial, Antifungus, and Producing Extracellular Xylanase. Biosaintifika 8, 96–104. https://doi.org/10.15294/biosaintifika.v8i1.5052
Süzgeç-selçuk, S., Birteksöz, A.S., 2011. Flavonoids of Helichrysum chasmolycicum and its antioxidant and antimicrobial activities. South African J. Bot. 77, 170–174. https://doi.org/10.1016/j.sajb.2010.07.017
Vincent, J., Marshall, J., Anzueto, A., Martin, C.D., Gomersall, C., Sakr, Y., Reinhard, K., 2009. and Outcomes of Infection in Intensive Care Units. jama 302, 2323–2329.
Wadood, A., Ghufran, M., Jamal, S.B., Naeem, M., Khan, A., Ghaffar, R., Asnad, 2013. Phytochemical Analysis of Medicinal Plants Occurring in Local Area of Mardan. Biochem. Anal. Biochem. 02, 2–5. https://doi.org/10.4172/2161-1009.1000144
Wibowo, D.P., Mariani, R., Hasanah, S.U., Aulifa, D.L., 2020. Chemical Constituents , Antibacterial Activity and Mode of Action of Elephant Ginger ( Zingiber officinale var . officinale ) and Emprit Ginger Rhizome ( Zingiber officinale var . amarum ) Essential Oils. Pharmacogn J 12, 404–409.
Yousefbeyk, F., Gohari, A.R., Hashemighahderijani, Z., Ostad, S.N., 2014. Bioactive Terpenoids and Flavonoids from Daucus littoralis Smith subsp . hyrcanicus Rech . f , an Endemic Species of Iran 1–6.
Zhan, P., Liu, W., 2017. The Changing Face of Dermatophytic Infections Worldwide. Mycopathologia 182, 77–86.

Most read articles by the same author(s)