In vitro antibacterial activities of crude extracts of nine plants on multidrug resistance bacterial isolates of wound infections

##plugins.themes.bootstrap3.article.main##

MUHAMMAD EVY PRASTIYANTO
NI MADE BUNGA ANGGELIA DEWI
TUSY DIAH PRATININGTIAS
NI MADE RAI PRATIWI
ANGGIS WINDAYANI
EKA WAHYUNENGSIH
ASTUTI
ELVIRA AMIR
FANDHI ADI WARDOYO

Abstract

Abstract. Prastiyanto ME, Dewi NMBA, Pratiningtias TD, Pratiwi NMR, Windayani A, Wahyunengsih E, Astuti, Amir E, Wardoyo FA. 2021. In vitro antibacterial activities of crude extracts of nine plants on multidrug resistance bacterial isolates of wound infections. Biodiversitas 22: 2641-2647. Wound infections caused by bacteria is a become serious health problems, multidrug resistance bacteria (MDR) have increased this problem more severely, and therefore, antibacterial agents from natural biological sources are necessary to overcome these problems. This study examined the antibacterial activities of nine plants, i.e. garlic (Allium sativum), Solo garlic (Allium sativum), Java plum leaf (Syzygium cumini), Java plum fruit (Syzygium cumini), lime (Citrus aurantifolia), Kaffir lime (Citrus hystrix), Siamese weed (Chromolaena odorata), mangosteen (Garcinia mangostana) and bitter melon (Momordica charantia), against MDR bacteria isolated from wounds. The antibacterial activities were evaluated using agar well diffusion assay to determine the inhibition zones, and microdilution method to determine the value of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The best antibacterial activities were calculated as the most extensive inhibition zones with the smallest MIC and MBC values. Ethanol extracts from five plants (garlic, Solo garlic, Java plum (leaf), Kaffir lime and bitter melon) showed antibacterial activities against three MDR bacteria isolated from wounds. The bitter melon extract had the largest zones, 19.3 mm (methicillin-resistant Staphylococcus aureus [MRSA]), 10.6 mm (ESBL-producing Escherichia coli), and 13 mm (carbapenemase-resistant Pseudomonas aeruginosa [CRPA]) with the smallest MIC and MBC values against MRSA (3.12 and 25 mg/mL), ESBL- producing E. coli (12.25 and 50 mg/mL), and CRPA (6.25 and 25 mg/mL). This concludes that bitter melon has the potential to be developed as an antibacterial agent, particularly against MRSA strains, ESBL-producing E. coli, and CRPA that cause wound infections. Further in vivo research and the discovery of modes of action are needed to explain the antibacterial effects.

##plugins.themes.bootstrap3.article.details##

References
Abuga I, Fariza S, Abdul R, Leong K, Syaiful M, Abdull B. 2020. European Journal of Integrative Medicine In vitro antibacterial effect of the leaf extract of Murraya koenigii on cell membrane destruction against pathogenic bacteria and phenolic compounds identification. Eur. J. Integr. Med. 33, 101010. https://doi.org/10.1016/j.eujim.2019.101010
Akhtar N. 2015. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab. J. Chem. https://doi.org/10.1016/j.arabjc.2015.01.013
Andleeb S, Alsalme A, Al-zaqri N, Warad I. Alkahtani, J., 2020. Journal of King Saud University – Science In-vitro antibacterial and antifungal properties of the organic solvent extract of Argemone mexicana L . J. King Saud Univ. - Sci. 1–6. https://doi.org/10.1016/j.jksus.2020.01.044
Annapoorani CA, Manimegalai K. 2013. Screening of Medical Planta Momordica carantia for Secondary Metabolies. Int. J. Pharm. Res. Dev. 5, 1–6.
Asagabaldan MA, Bedoux G, Bourgougnon N. 2019. Bacterial isolates from bryozoan Pleurocodonellina sp .: Diversity and antimicrobial potential against pathogenic bacteria. Biodiversitas 20, 2528–2535. https://doi.org/10.13057/biodiv/d200914
Aumeeruddy-elalfi Z, Gurib-fakim A, Mahomoodally F. 2015. Antimicrobial , antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind. Crop. Prod. 71, 197–204. https://doi.org/10.1016/j.indcrop.2015.03.058
Bologa CG, Ursu O, Oprea T, Melançon CE, Tegos G. 2013. Emerging Trends in the Discovery of Natural Product Antibacterials Cristian. Curr Opin Pharmacol. 13, 678–687. https://doi.org/10.1016/j.cortex.2009.08.003.Predictive
Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. 2009. Bad Bugs, No Drugs?: No ESKAPE?! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12. https://doi.org/10.1086/595011
Broniatowski M. Mastalerz P. 2015. Biochimica et Biophysica Acta Studies of the interactions of ursane-type bioactive terpenes with the model of Escherichia coli inner membrane — Langmuir monolayer approach 1848, 469–476.
Chopra S, Harjai K, Chhibber S. 2016. Potential of combination therapy of endolysin MR-10 and minocycline in treating MRSA induced systemic and localized burn wound infections in mice. Int. J. Med. Microbiol. 306, 707–716. https://doi.org/10.1016/j.ijmm.2016.08.003
CLSI. 2019. M100 Performance Standards for Antimicrobial Susceptibility Testing, 29th ed, Journal of Services Marketing. https://doi.org/10.1108/08876049410065598
CLSI. 2018. M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th Edition. CLSI.
Han G, Ceilleey R. 2017. Chronic Wound Healing?: A Review of Current Management and Treatments. Adv. Ther. 34, 599–610. https://doi.org/10.1007/s12325-017-0478-y
Ilvani E, Wilson W, Prastiyanto ME. 2019. Uji Antibakteri Ekstrak Etanol Biji Pepaya ( Carica papaya L .) terhadap Pertumbuhan Escherichia coli ESBL, in: Prosiding Seminar Nasional Mahasiswa Unimus 2. pp. 24–31.
Khalid M. Bilal M. Dan-feng H. 2019. ScienceDirect Role of flavonoids in plant interactions with the environment and against human pathogens - A review. J. Integr. Agric. 18, 211–230. https://doi.org/10.1016/S2095-3119(19)62555-4
Khan M, Omoloso A. 1998. Momordica charantia and Allium Sativum: Broad Spectrum Antibacterial Activity. Korean J. Pharmacogn. 29, 155–58. https://doi.org/10.4236/cm.2011.24021
Kumar DS, Sharathnath KV, Yogeswaran P, Harani A, Sudhakar K, Sudha P, Banji D. 2010. a medicinal potency of momordica charantia 1, 95–100.
Kumar SR, Loveleena D, Godwin S. 2013. Medicinal Property of Murraya Koenigii - A Review. Int. Res. J. Biol. Sci. 2, 80–83.
Leelaprakash G, Rose JC, Javvaji. 2011. Invitro antimicrobial and Antioxidant Activity of Momordica charantia. Pharmacophore 2, 244–252.
Lestari SD, Sadiq ALO, Safitri WA, Dewi SS, Prastiyanto ME. 2019. The antibacterial activities of bacteriocin Pediococcus acidilactici of breast milk isolate to against methicillin-resistant Staphylococcus aureus The antibacterial activities of bacteriocin Pediococcus acidilactici of breast milk isolate to against methi. J. Phys. Conf. Ser. 1375, 012021. https://doi.org/10.1088/1742-6596/1374/1/012021
Liang Y, Zhao X, Hu T, Han Y, Guo B. 2019. Journal of Colloid and Interface Science composite hydrogel wound dressing to promote the regeneration of infected skin. J. Colloid Interface Sci. 556, 514–528. https://doi.org/10.1016/j.jcis.2019.08.083
Manzuoerh R, Reza M, Oryan A, Sonboli A. 2019. Biomedicine & Pharmacotherapy Original article E ff ectiveness of topical administration of Anethum graveolens essential oil on MRSA-infected wounds. Biomed. Pharmacother. J. 109, 1650–1658.
Mwambete KD. 2009. The in vitro antimicrobial activity of fruit and leaf crude extracts of Momordica charantia?: A Tanzania medicinal plant. Afican Heal. Sci. 9.
Nasser M, Ogaili M, Palwe S, Kharat AS. 2020. Molecular detection of extended spectrum ?-lactamases, metallo ?-lactamases, and Amp-C?-lactamase genes expressed by multiple drug resistant Pseudomonas aeruginosa isolates collected from patients with burn/wound infections. Burn. Open 4, 160–166. https://doi.org/10.1016/j.burnso.2020.07.003
Pallavali RR, Avula S, Lakshmi V, Penubala M, Damu AG, Raghava V, Durbaka P. 2019. Data of antibacterial activity of plant leaves crude extract on bacterial isolates of wound infections. Data Br. 24, 103896. https://doi.org/10.1016/j.dib.2019.103896
Panjaitan RA, Darmawati S, Prastiyanto ME. 2018. Aktivitas Antibakteri Madu Terhadap Bakteri Multi Drug Resistant Salmonella typhi Dan Methicillin-Resistant Staphylococcus aureus, in: Seminar Nasional Edusainstek FMIPA UNIMUS 2018. Semarang, pp. 70–77.
Petkovs?ek Z, Elers?ic? K, Gubina M, Z?gur-Bertok D, Erjavec S. 2009. Virulence Potential of Escherichia coli Isolates from Skin and Soft Tissue Infections?? iva Petkovs. J. Clin. Microbiol. 47, 1811–1817. https://doi.org/10.1128/JCM.01421-08
Prastiyanto M, Rohmah N, Efendi L, Arifin R, Wardoyo FA, Wilson W, Mukaromah A, Dewi S, Darmawati S. 2021. Antifungal activities of the rhizome extract of five member Zingiberaceae against Candida albicans and Trichophyton rubrum. Biodiversitas 22, 1509–1513. https://doi.org/10.13057/biodiv/d220355
Prastiyanto ME, Azizah IH, Haqi HD, Yulianto, B.D., Agmala, A.B., Radipasari, Z.D., Astuti, N.A.D., 2020a. In-vitro antibacterial activity of the seed extract of three member Artocarpus towards methicillin resistant Staphylococcus aureus (MRSA). J. Teknol. Lab. 9, 1–6. https://doi.org/10.29238/tek
Prastiyanto ME, Rukmana RM, Saraswati DK, Darmawati S, Maharani ETW, Tursinawati Y. 2020b. Anticancer potential of methanolic extracts from Pleurotus species on raji cells and antibacterial activity against Methicillin-Resistant Staphylococcus aureus. Biodiversitas 21, 5644–5649. https://doi.org/10.13057/biodiv/d211221
Prastiyanto ME, Setyaningtyas A, Trisnawati L, Syafira A. 2016. Antimicrobial Activity and Identification The Compounds of Methanol Extract from The Pleurotus Ostreatus Fruiting Body. el-Hayah 6, 29–34.
Prastiyanto ME, Tama PD, Ananda N, Wilson W, Mukaromah AH. 2020c. Antibacterial Potential of Jatropha sp . Latex against Multidrug-Resistant Bacteria. Int. J. Microbiol. 2020. https://doi.org/https://doi.org/10.1155/2020/8509650
Prastiyanto M.E., Wardoyo, F.A., Wilson, W., Darmawati, S., 2020d. Antibacterial Activity of Various Extracts of Averrhoa bilimbi against Multidrug Resistant Bacteria. Biosaintifika 12, 163–168.
Prastiyanto ME, Rohmah N, Efendi L, Arifin R, Wardoyo FA, Wilson W, Mukaromah AH, Dewi SS, Darmawati S. 2021. Antifungal activities of the rhizome extract of five member Zingiberaceae against Candida albicans and Trichophyton rubrum. Biodiversitas. 22, 1509-1513. https://doi.org/10.13057/biodiv/d220355
Wahyuni RA, Putri IY, Jayadi EL, Prastiyanto ME. 2019. Aktivitas Antibakteri Ekstrak Buah Parijoto (Medinilla speciosa) terhadap bakteri Extended Spectrum Betalactamase (ESBL) Escherichia coli dan Methicillin Resistant Staphylococcus aureus (MRSA). J. Media Anal. Kesehat. 10, 106–118.
Xu R, Luo G, Xia H, He W, Zhao J, Liu B, Tan J, Zhou J, Liu D, Wang Y, Yao Z, Zhan R, Yang S, Wu J. 2015. Biomaterials Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 40, 1–11. https://doi.org/10.1016/j.biomaterials.2014.10.077
Yin C, Xie L, Guo Y. 2018. Phytochemical analysis and antibacterial activity of Gentiana macrophylla extract against bacteria isolated from burn wound infections. Microb. Pathog. 114, 25–28. https://doi.org/10.1016/j.micpath.2017.10.049