Antibacterial activity of seed kernel extracts of seven mangoes (Mangifera indica) cultivars native to Indonesia against MDR-Pseudomonas aeruginosa isolated from wounds

##plugins.themes.bootstrap3.article.main##

MUHAMMAD EVY PRASTIYANTO
SRI DARMAWATI
ANA HIDAYATI MUKAROMAH

Abstract

Abstract. Prastiyanto ME, Darmawati S, Mukaromah AH. 2022. In vitro evaluation of the antibacterial activity of seed kernel extracts of seven mangoes (Mangifera indica) cultivars native to Indonesia against MDR-Pseudomonas aeruginosa isolated from wounds. Biodiversitas 23: 5629-5637. Pseudomonas aeroginusa is the most common bacterium causing wound infections, with the most common solution being antibiotics. However, excessive and inappropriate use of antibiotics will lead to the emergence of multi-drug resistant (MDR) bacterial strains. Therefore, natural ingredients are needed as alternative antibacterial agents. This study aimed to determine the antibacterial activity of seed kernel extracts from seven cultivars of mango (Mangifera indica) from Indonesia, i.e., Cengkir, Kopyor, Golek, Kweni, Avocado, Arumanis, and Manalagi, against MDR-P. aeroginusa bacteria isolated from wounds. The agar well diffusion method was carried out to determine the inhibition zone, and the microdilution method was used to determine the MIC and MBC values. The results showed that the seed kernel extracts of seven cultivars of mangoes had antibacterial activity against MDR-P. aeruginosa. Of the seven mango cultivars, Kweni cultivar seed kernel extracts demonstrated the lowest MIC and MBC values of ?0.75 mg/mL and ?12.5 mg/mL. This study concludes that Kweni cultivar seed kernel extracts have the potential to be developed as agents of anti-MDR-P. aeruginosa causes wound infection.

##plugins.themes.bootstrap3.article.details##

References
Bassetti M, Vena A, Croxatto A, Righi E, Guery B. 2018. How to manage Pseudomonas aeruginosa infections Risk factors for antimicrobial resistance in P. aeruginosa. Drugs Context 7, 1–18. https://doi.org/10.7573/dic.212527
Branski LK, Al-mousawi A, Rivero H, Jeschke MG, Sanford AP, Herndon DN. 2009. Emerging Infections in Burns. Surg. Infect. (Larchmt). 10.
CLSI, 2020. M100 Performance Standards for Antimicrobial. Wayne.
Dzotam JK, Kuete V. 2017. Antibacterial and Antibiotic-Modifying Activity of Methanol Extracts from Six Cameroonian Food Plants against Multidrug-Resistant Enteric Bacteria. Biomed Res. Int. 2017, 19.
El-gied AAA, Joseph MRP, Mahmoud IM, Abdelkareem, A.M., Hakami, A.M. Al, Hamid, M.E., 2012. Antimicrobial Activities of Seed Extracts of Mango ( Mangifera indica L .). Adv. Microbiol. 2012, 571–576.
Engels C, Knödler M, Zhao Y, Carle R, Gänzle MG. 2009. Antimicrobial activity of gallotannins isolated from mango (Mangifera indica L.) kernels. J Agric Food Chem 57, 19655802. https://doi.org/10.1021/jf901621m
Estrela C, Rodrigues C, Estrela DA. 2001. Two Methods to Evaluate the Antimicrobial Action of Calcium Hydroxide Paste. J. Endod. 27, 12–15.
Eve A, Aliero AA, Nalubiri D, Adeyemo RO, Akinola SA, Pius T, Nabaasa S, Nabukeera S, Alkali B, Ntulume I. 2020. In Vitro Antibacterial Activity of Crude Extracts of Artocarpus heterophyllus Seeds against Selected Diarrhoea-Causing Superbug Bacteria. Sci. World J. 2020. https://doi.org/10.1155/2020/9813970
Everts R. 2017. How to Treat Prevention and treatment. The Health Media Ltd, New Zealand.
Griffin SG, Wyllie SG, Markham JL, Leach DN. 1999. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity †. Flavour Fragr. J. / 14, 4–5. https://doi.org/10.1002/(SICI)1099-1026(199909/10)14
Hernández-Sánchez, Sanz-Berzosa, Casaña-Giner, Primo-Yúfera, 2001. Attractiveness for Ceratitis capitata (Wiedemann) (Dipt., Tephritidae) of mango (Mangifera indica, cv. Tommy Atkins) airborne terpenes. J. Appl. Entomol. 125, 10–11. https://doi.org/10.1046/j.1439-0418.2001.00510.x
Huang C, Kuo C, Wu C, Kuan A, Guo H, Lin Y, Wang P. 2018. and Antibacterial Activities of Water and Ethanol Extracts Prepared from Compressional-Puffing Pretreated Mango ( Mangifera indica L.) Peels. J. Food Qual. 1025387, 13.
Jiamboonsri P, Pithayanukul P, Bavovada R, Chomnawang MT. 2011. The Inhibitory Potential of Thai Mango Seed Kernel Extract against Methicillin-Resistant Staphylococcus Aureus. molecules 16, 6255–6270. https://doi.org/10.3390/molecules16086255
Kaur J, Rathinam X, Kasi M, Leng KM, Ayyalu R, Kathiresan S, Subramaniam, S., 2010. Preliminary investigation on the antibacterial activity of mango (Mangifera indica L?: Anacardiaceae) seed kernel. AsianPac.J.Trop.Med. 3, 707–710. https://doi.org/10.1016/S1995-7645(10)60170-8
Khan MI, Ahhmed A, Shin JH, Baek JS, Kim MY, Kim JD. 2018. Green Tea Seed Isolated Saponins Exerts Antibacterial Effects against Various Strains of Gram Positive and Gram Negative Bacteria, a Comprehensive Study In Vitro and In Vivo. Evidence-Based Complement. Altern. Med. 3486106, 12. https://doi.org/10.1155/2018/3486106
Kim H, Castellon-chicas MJ, Arbizu S, Talcott ST, Drury NL, Smith S, Mertens-talcott SU. 2021. Intestinal Microbial Health Benefits, and Associated Mechanisms of Actions. Molecules 26, 2732.
Kumar M, Saurabh V, Tomar M, Hasan M, Changan S, Sasi, M., Maheshwari, C., 2021. Mango (Mangifera indica L.) Leaves Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities Enhanced Reader. antioxidants 10, 299.
Lalel HJD, Singh Z, Chye, S. 2003. Aroma v olatiles production during fruit ripening of ‘ Kensington Pride mango. Postharvest Biol. Technol. 27, 323–336.
Lestari SD, Sadiq ALO, Safitri WA, Dewi SS, Prastiyanto ME. 2019. The antibacterial activities of bacteriocin Pediococcus acidilactici of breast milk isolate to against methicillin-resistant Staphylococcus aureus The antibacterial activities of bacteriocin Pediococcus acidilactici of breast milk isolate to against methi. J. Phys. Conf. Ser. 1375, 012021. https://doi.org/10.1088/1742-6596/1374/1/012021
Luís Â, Silva F, Sousa S, Duarte AP. 2014. Antistaphylococcal and biofilm inhibitory activities of gallic , caffeic , and chlorogenic acids. J. Bioadhesion Bio?lm Res. 30, 22–25.
Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. 2009. Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix. PLoS Pathog. 5, e1000354. https://doi.org/10.1371/journal.ppat.1000354
Mabhiza D, Chitemerere T, Mukanganyama S. 2016. Antibacterial Properties of Alkaloid Extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. Int. J. Med. Chem. 2016, 7.
Moradali MF, Ghods S, Rehm BHA. 2017. Pseudomonas aeruginosa Lifestyle?: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol 7, 39. https://doi.org/10.3389/fcimb.2017.00039
Mutua JK, Imathiu S, Owino W. 2017. Evaluation of the proximate composition, antioxidant potential, and antimicrobial activity of mango seed kernel extracts. Food Sci. Nutr. 5, 349–357. https://doi.org/10.1002/fsn3.399
Nagoba BS, Selkar SP, Wadher BJ, Gandhi RC. 2013. Acetic acid treatment of pseudomonal wound infections A review. J. Infect. Public Health 6, 410–415. https://doi.org/10.1016/j.jiph.2013.05.005
Nasser M, Ogali M, Kharat AS. 2018. Prevalence of MDR Pseudomonas aeruginosa of war-related wound and burn ward infections from some con fl ict areas of Western Yemen. Wound Med. 20, 58–61. https://doi.org/10.1016/j.wndm.2018.02.001
Prastiyanto ME, Dewi N, Pratiningtias T, Pratiwi N, Windayani A, Wahyunengsih E, Astuti, Amir E, Wardoyo F. 2021. In vitro antibacterial activities of crude extracts of nine plants on multidrug resistance bacterial isolates of wound infections. Biodiversitas 22, 2641–2647. https://doi.org/10.13057/biodiv/d220712
Prastiyanto ME. 2021. Seeds extract of three Artocarpus species?: Their in-vitro antibacterial activities against multidrug-resistant (MDR) Escherichia coli isolates from urinary tract infections (UTIs). Biodiversitas 22, 4356–4362. https://doi.org/10.13057/biodiv/d221028
Prastiyanto ME, Rukmana RM, Saraswati DK, Darmawati S, Maharani ETW, Tursinawati, Y., 2020a. Anticancer potential of methanolic extracts from Pleurotus species on raji cells and antibacterial activity against Methicillin-Resistant Staphylococcus aureus. Biodiversitas 21, 5644–5649. https://doi.org/10.13057/biodiv/d211221
Prastiyanto ME, Tama PD, Ananda N, Wilson W, Mukaromah AH. 2020b. Antibacterial Potential of Jatropha sp. Latex against Multidrug-Resistant Bacteria. Int. J. Microbiol. 2020. https://doi.org/https://doi.org/10.1155/2020/8509650
Prastiyanto ME, Wardoyo FA, Wilson W, Darmawati S. 2020c. Antibacterial Activity of Various Extracts of Averrhoa bilimbi against Multidrug Resistant Bacteria. Biosaintifika 12, 163–168.
Prastiyanto ME, Kartika AI, Darmawati S. 2022. Bioprospecting of bacterial symbionts of sponge Spongia officinalis from Savu Sea , Indonesia for antibacterial potential against multidrug- resistant bacteria. Biodiversitas 23, 1118–1124. https://doi.org/10.13057/biodiv/d230256
Puca V, Marulli RZ, Grande R, Vitale I, Niro A. 2021. Microbial Species Isolated from Infected Wounds and Antimicrobial Resistance Analysis?: Data Emerging from a Three-Years Retrospective Study. Antibiot. 10, 1162. https://doi.org/10.3390/antibiotics10101162
Rahim K, Saleha S, Zhu X, Huo L, Basit A. 2016. Bacterial Contribution in Chronicity of Wounds. Microb. Ecol. https://doi.org/10.1007/s00248-016-0867-9
Royani A, Hanafi M, Julistiono H, Manaf, A. 2022. Materials Today?: Proceedings The total phenolic and flavonoid contents of Aloe vera and Morinda citrifolia extracts as antibacterial material against Pseudomonas aeruginosa. Mater. Today Proc. 2022. https://doi.org/10.1016/j.matpr.2022.06.466
Smolle C, Cambiaso-daniel J, Forbes AA, Wurzer P, Branski LK, Huss F, Kamolz L, Surgery R, Surgery M, Surgery P. 2018. Recent Trends in Burn Epidemiology Worldwide: A Systematic Review. HHS Public Access 43, 249–257. https://doi.org/10.1016/j.burns.2016.08.013.Recent
Somkuwar D, Kamble V. 2013. Phytochemical screening of ethanolic extracts of stem, leaves, flower and seed kernel of Mangifera indica L. Pharmacognosy 4, 383–389.
Tirado-kulieva V. Atoche-Dioses S, Hernández-Martínez E. 2021. Phenolic compounds of mango (Mangifera indica) by-products?: Antioxidant and antimicrobial potential , use in disease prevention and food industry. Sci. Agropecu. 12, 283–293.
Tzaneva V, Irena M, Galina T, Dimitar P. 2016. Antibiotic treatment and resistance in chronic wounds of vascular origin. Clujul Med. 89, 365–370. https://doi.org/10.15386/cjmed-647
Ullah F, Akbar S, Ahmed J. 2009. Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the North West of Pakistan. Burns 35, 1020–1025. https://doi.org/10.1016/j.burns.2009.01.005
Yadav D, Pal AK, Singh SP, Sati K. 2022. Phytochemicals in mango (Mangifera indica) parts and their bioactivities?: A Review. Crop Res. 57, 79–95.
Zengin H, Baysal AH. 2014. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. molecules 19, 11–12. https://doi.org/10.3390/molecules191117773

Most read articles by the same author(s)