Diversity and cellulolytic activity of culturable bacteria isolated from the gut of higher termites (Odontotermes sp.) in eastern Thailand

##plugins.themes.bootstrap3.article.main##

PARIMA BOONTANOM
AIYA CHANTARASIRI

Abstract

Abstract. Boontanom P, Chantarasiri A. 2021. Diversity and cellulolytic activity of culturable bacteria isolated from the gut of higher termites (Odontotermes sp.) in eastern Thailand. Biodiversitas 22: 3349-3357. Cellulolytic bacteria are vital symbionts associated with the gut of all higher termites. Odontotermes termites are a higher termite widely found in Thailand. However, information concerning the diversity of cellulolytic bacteria in this termite gut remains inadequate. The aim of this study is to isolate and identify the culturable cellulolytic bacteria from the Odontotermes gut collected from eastern Thailand. The crude cellulases produced from the most active cellulolytic bacterium were further characterized. Thirty-two cellulolytic bacteria were isolated and subsequently classified by PCR-RFLP of the 16S rRNA gene. A total of 10 different RFLP patterns were obtained belonging to five bacterial genera, namely Acinetobacter, Bacillus, Citrobacter, Paenibacillus, and Serratia. The B. cereus strain TWV503 was considered to be the most active cellulolytic bacterium based on the CMC agar method. B. cereus strain TWV503 showed CMCase activity at 2.190 ± 0.063 U/mL of CMCase and 0.276 ± 0.031 U/mL of FPase. The optimum temperature and pH for CMCase activity were 50°C and the neutral pH ranging from 7.0 to 8.0, respectively. CMCase activity remained stable at up to 70°C and neutral pH ranging from 7.0 to 8.0 for 24 hours of incubation. This study revealed novel information related to cellulolytic bacteria isolated from the gut of Odontotermes termites collected from Thailand.

##plugins.themes.bootstrap3.article.details##

References
Boontanom P, Chantarasiri A. 2020. Short Communication: diversity of culturable epiphytic bacteria isolated from seagrass (Halodule uninervis) in Thailand and their preliminary antibacterial activity. Biodiversitas 21: 2907-2913. DOI: 10.13057/biodiv/d210706.
Brune A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12: 168-180. DOI: 10.1038/nrmicro3182.
Chantarasiri A. 2014. Novel halotolerant cellulolytic Bacillus methylotrophicus RYC01101 isolated from ruminant feces in Thailand and its application for bioethanol production. KMUTNB Int J Appl Sci Technol 7: 63-68. DOI: 10.14416/j.ijast.2014.07.001.
Chantarasiri A. 2015. Aquatic Bacillus cereus JD0404 isolated from the muddy sediments of mangrove swamps in Thailand and characterization of its cellulolytic activity. Egypt. J Aquat Res 41: 257-264. DOI: 10.1016/j.ejar.2015.08.003.
Chantarasiri A. 2020. Diversity of cellulolytic bacteria isolated from a freshwater wetland reserve in Thailand and their cellulolytic activity. Appl Ecol Environ Res 18: 5965-5983. DOI: 10.15666/aeer/1804_59655983.
Chantarasiri A, Boontanom P, Yensaysuk N, Ajwichai P. 2015. Isolation and identification of a cellulase-producing Bacillus sp. strain BR0302 from Thai coastal wetland soil. KMUTNB Int J Appl Sci Technol 8: 197-203. DOI: 10.14416/j.ijast.2015.07.002.
Chiu CI, Yeh HT, Li PL, Kuo CY, Tsai MJ, Li HF. 2018. Foraging phenology of the fungus-growing termite Odontotermes formosanus (Blattodea: Termitidae). Environ Entomol 47: 1509-1516. DOI: 10.1093/ee/nvy140.
Ferbiyanto A, Rusmana I, Raffiudin R. 2015. Characterization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. Hayati J Biosciences 22: 197-200. DOI: 10.1016/j.hjb.2015.07.001.
Ferreira RL, Rezende GS, Damas MSF, Oliveira-Silva M, Pitondo-Silva A, Brito MCA, Leonardecz E, de Góes FR, Campanini EB, Malavazi I, da Cunha AF, da Silva Pranchevicius MC. 2020. Characterization of KPC-producing Serratia marcescens in an intensive care unit of a Brazilian tertiary hospital. Front Microbiol 11: 956. DOI: 10.3389/fmicb.2020.00956.
Fu R, Zhou L, Feng K, Lu X, Luo J, Tang F. Effects of Serratia marcescens (SM1) and its interaction with common biocontrol agents on the termite, Odontotermes formosanus (Shiraki). J For Res 32: 1263-1267. DOI: 10.1007/s11676-020-01122-w.
Handique G, Phukan A, Bhattacharyya B, Baruah AALH, Rahman SW, Baruah R. 2017. Characterization of cellulose degrading bacteria from the larval gut of the white grub beetle Lepidiota mansueta (Coleoptera: Scarabaeidae). Arch Insect Biochem Physiol 94: e21370. DOI: 10.1002/arch.21370.
Hongoh Y. 2011. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68: 1311-1325. DOI: 10.1007/s00018-011-0648-z.
Howard A, O’Donoghue M, Feeney A, Sleator RD. 2012. Acinetobacter baumannii an emerging opportunistic pathogen. Virulence 3: 243-250.
Juturu V, Wu JC. 2014. Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev 33: 188-203. DOI: 10.1016/j.rser.2014.01.077.
Karthika A, Seenivasagan R, Kasimani R, Babalola OO, Vasanthy M. 2020. Cellulolytic bacteria isolation, screening and optimization of enzyme production from vermicompost of paper cup waste. Waste Manage 116: 58-65. DOI: 10.1016/j.wasman.2020.06.036.
Kavitha D, Vijayarani K, Kumanan K. 2014. 16S rRNA typing of cellulolytic bacteria from the termite Odontotermes formosanus. Ind J Vet & Anim Sci Res 43: 359-368.
König H, Li L, Fröhlich J. 2013. The cellulolytic system of the termite gut. Appl Microbiol Biotechnol 97: 7943-7962. DOI: 10.1007/s00253-013-5119-z.
Korb J. 2018. Social evolution in termites. In: Breed MD, Moore J (eds) Encyclopedia of Animal Behavior. Academic Press, Oxford, UK. DOI: 10.1016/B978-0-12-809633-8.20751-6.
Makonde HM, Boga HI, Osiemo Z, Mwirichia R, Mackenzie LM, Göker M, Klenk HP. 2013. 16S-rRNA-based analysis of bacterial diversity in the gut of fungus-cultivating termites (Microtermes and Odontotermes species). Antonie van Leeuwenhoek 104: 869-883. DOI: 10.1007/s10482-013-0001-7.
Manjula A, Pushpanathan M, Sathyavathi S, Gunasekaran P, Rajendhran J. 2016. Comparative analysis of microbial diversity in termite gut and termite nest using ion sequencing. Curr Microbiol 72: 267-275. DOI: 10.1007/s00284-015-0947-y.
Maurice N, Erdei L. 2018. Termite gut microbiome. In: Khan M, Ahmad W (eds) Termites and Sustainable Management. Springer, Cham, Switzerland. DOI: 10.1007/978-3-319-72110-1_4.
Mathew GM, Ju YM, Lai CY, Mathew DC, Huang CC. 2012. Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualists. FEMS Microbiol Ecol 79: 504-517. DOI: 10.1111/j.1574-6941.2011.01232.x.
Menendez E, Garcia-Fraile P, Rivas R. 2015. Biotechnological applications of bacterial cellulases. AIMS Bioeng 2: 163-182. DOI: 10.3934/bioeng.2015.3.163.
Metri BC, Jyothi P, Peerapur BV. 2013. Antibiotic resistance in Citrobacter spp. isolated from urinary tract infection. Urol Ann 5: 312-313. DOI: 10.4103/0974-7796.120295.
Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A. 2015. Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24: 5284-5295. DOI: 10.1111/mec.13376.
Muwawa EM, Budambula NLM, Osiemo ZL, Boga HI, Makonde HM. 2016. Isolation and characterization of some gut microbial symbionts from fungus-cultivating termites (Macrotermes and Odontotermes spp.). Afr J Microbiol Res 10: 994-1004. DOI: 10.5897/AJMR2016.8060.
Nimchua T, Thongaram T, Uengwetwanit T, Pongpattanakitshote S, Eurwilaichitr L. 2012. Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J Microbiol Biotechnol 22: 462-469. DOI: 10.4014/jmb.1108.08037.
Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J. 2017. Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4: 16. DOI: 10.1186/s40643-017-0146-8.
Otani S, Mikaelyan A, Nobre T, Hansen LH, Koné NA, Sørensen SJ, Aanen DK, Boomsma JJ, Brune A, Poulsen M. 2014. Identifying the core microbial community in the gut of fungus-growing termites. Mol Ecol 23: 4631-4644. DOI: 10.1111/mec.12874.
Padda KP, Puri A, Chanway CP. 2017. Paenibacillus polymyxa: a prominent biofertilizer and biocontrol agent for sustainable agriculture. In: Meena VS, Mishra P, Bisht J, Pattanayak A. (eds) Agriculturally Important Microbes for Sustainable Agriculture. Springer, Singapore. DOI: 10.1007/978-981-10-5343-6_6.
Pasari N, Gupta M, Eqbal D, Yazdani SS. 2019. Genome analysis of Paenibacillus polymyxa A18 gives insights into the features associated with its adaptation to the termite gut environment. Sci Rep 9: 6091. DOI: 10.1038/s41598-019-42572-5.
Peterson BF, Scharf ME. 2016. Lower termite associations with microbes: synergy, protection, and interplay. Front Microbiol 7: 422. DOI: 10.3389/fmicb.2016.00422.
Pourramezan Z, Ghezelbash GR, Romani B, Ziaei S, Hedayatkhah A. 2012. Screening and identification of newly isolated cellulose degrading bacteria from the gut of xylophagous termite Microcerotermes diversus (Silvestri). Microbiol 81: 736-742. DOI: 10.1134/S0026261712060124.
R Core Team. 2020. R: A Language and environment for statistical computing. R Core Team, Vienna, Austria.
Sadhu S, Maiti TK. 2013. Cellulase production by bacteria: a review. Br Microbiol Res J 3: 235-258.
Sharma D, Joshi B, Bhatt MR, Joshi J, Malla R, Bhattarai T, Sreerama L. 2015. Isolation of cellulolytic organisms from the gut contents of termites native to Nepal and their utility in saccharification and fermentation of lignocellulosic biomass. Journal of Biomass to Biofuel 2: 2368-5964. DOI: 10.11159/jbb.2015.002.
Shweta A. 2014. Cellulases of bacterial origin and their applications: a review. International Journal of Science and Research 3: 1652-1655.
Sreena CP, Resna NK, Sebastian D. 2015. Isolation and characterization of cellulase producing bacteria from the gut of termites (Odontotermes and Heterotermes species). Br Biotechnol J 9: 1-10. DOI: 10.9734/BBJ/2015/20001.
Taechapoempol K, Sreethawong T, Rangsunvigit P, Namprohm W, Thamprajamchit B, Rengpipat S, Chavadej S. 2011. Cellulase-producing bacteria from Thai higher termites, Microcerotermes sp.: enzymatic activities and ionic liquid tolerance. Appl Biochem Biotechnol 164: 204-219. DOI: 10.1007/s12010-010-9128-4.
Wititsiri S. 2011. Production of wood vinegars from coconut shells and additional materials for control of termite workers, Odontotermes sp. and striped mealy bugs, Ferrisia virgata. Songklanakarin J Sci Technol 33: 349-354.
Wu B, Zheng S, Pedroso MM, Guddat LW, Chang S, He B, Schenk G. 2018. Processivity and enzymatic mechanism of a multifunctional family 5 endoglucanase from Bacillus subtilis BS-5 with potential applications in the saccharification of cellulosic substrates. Biotechnol Biofuels 11: 20. DOI: 10.1186/s13068-018-1022-2.

Most read articles by the same author(s)