Shewanella baltica strain JD0705 isolated from the mangrove wetland soils in Thailand and characterization of its ligninolytic performance

##plugins.themes.bootstrap3.article.main##

AIYA CHANTARASIRI

Abstract

Abstract. Chantarasiri A. 2021. Shewanella baltica strain JD0705 isolated from the mangrove wetland soils in Thailand and characterization of its ligninolytic performance. Biodiversitas 22: 354-361. Lignin is a complex biopolymer and the third component by mass of lignocellulosic plant biomass. Its recalcitrant property hampers the hydrolysis and utilization of cellulose and hemicellulose in the lignocellulosic biomass. Thus, the delignification of lignocellulosic biomass is an enormous challenge for emerging bio-based applications. This study presented a potential ligninolytic bacterium for potential use in the biological delignification process under mild conditions. This bacterium was isolated from the mangrove wetland soils in Thailand, characterized and identified as psychrotrophic Shewanella baltica strain JD0705. It was determined for ligninolytic activity and showed laccase activity at 5.23 ± 0.10 U/mL. The optimum temperature and pH for the laccase activity were observed to be 25°C at a pH of 7.0 respectively with a stability range of 20-30°C temperature and pH of 7.0-8.0. S. baltica strain JD0705 was used in the biological delignification of rice husk powder and promoted the hydrolysis of rice husk powder to obtain more liberating sugar content. The findings from this study indicated that feasibility of using this ligninolytic bacterium for the production of laccase and the delignification of lignocellulosic plant biomass.

##plugins.themes.bootstrap3.article.details##

References
Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. 2011. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances 29: 675-685. DOI: 10.1016/j.biotechadv.2011.05.005
Bandounas L, Wierckx NJP, de Winde JH, Ruijssenaars HJ. 2011. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnology 11: 94. DOI: 10.1186/1472-6750-11-94
Boontanom P, Chantarasiri A. 2020. Short communication: Diversity of culturable epiphytic bacteria isolated from seagrass (Halodule uninervis) in Thailand and their preliminary antibacterial activity. Biodiversitas 21(7): 2907-2913. DOI: 10.13057/biodiv/d210706
Bu T, Yang R, Zhang Y, Cai Y, Tang Z, Li C, Wu Q, Chen H. 2020. Improving decolorization of dyes by laccase from Bacillus licheniformis by random and site-directed mutagenesis. PeerJ 8: e10267. DOI: 10.7717/peerj.10267
Bugg TDH, Ahmad M, Hardiman EM, Singh R. 2011. The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology 22: 394-400. DOI: 10.1016/j.copbio.2010.10.009
Chandel AK, Gonçalves BCM, Strap JL, da Silva SS. 2015. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production. Critical Reviews in Biotechnology 35(3): 281-293. DOI: 10.3109/07388551.2013.841638
Chang YC, Choi D, Takamizawa K, Kikuchi S. 2014. Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresource Technology 152: 429-436. DOI: 10.1016/j.biortech.2013.11.032
Chantarasiri A. 2015. Aquatic Bacillus cereus JD0404 isolated from the muddy sediments of mangrove swamps in Thailand and characterization of its cellulolytic activity. Egyptian Journal of Aquatic Research 41: 257-264. DOI: 10.1016/j.ejar.2015.08.003
Chantarasiri A. 2020. Klebsiella and Enterobacter isolated from mangrove wetland soils in Thailand and their application in biological decolorization of textile reactive dyes. International Journal of Environmental Research and Public Health 17: 7531. DOI: 10.3390/ijerph17207531
Chantarasiri A, Boontanom P. 2017. Decolorization of synthetic dyes by ligninolytic Lysinibacillus sphaericus JD1103 isolated from Thai wetland ecosystems. AACL Bioflux 10(4): 814-819.
Chantarasiri A, Boontanom P, Nuiplot N. 2017. Isolation and characterization of Lysinibacillus sphaericus BR2308 from coastal wetland in Thailand for the biodegradation of lignin. AACL Bioflux 10(2): 200-209.
Christopher LP, Yao B, Ji Y. 2014. Lignin biodegradation with laccase-mediator systems. Frontiers in Energy Research 2: 12. DOI: 10.3389/fenrg.2014.00012
Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P. 2017. Enzymatic degradation of lignin in soil: A review. Sustainability 9: 1163. DOI: 10.3390/su9071163
Duval A, Lawoko M. 2014. A review on lignin-based polymeric, micro- and nano-structured materials. Reactive & Functional Polymers 85: 78-96. DOI: 10.1016/j.reactfunctpolym.2014.09.017
Ferbiyanto A, Rusmana I, Raffiudin R. 2015. Characterization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. HAYATI Journal of Biosciences 22(4): 197-200. DOI: 10.1016/j.hjb.2015.07.001
Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. 2010. Laccases: a never-ending story. Cellular and Molecular Life Sciences 67: 369-385. DOI: 10.1007/s00018-009-0169-1
Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27(2): 221-224. DOI: 10.1093/molbev/msp259
Gu Q, Fu L, Wang Y, Lin J. 2013. Identification and characterization of extracellular cyclic dipeptides as quorum-sensing signal molecules from Shewanella baltica, the specific spoilage organism of Pseudosciaena crocea during 4°C storage. Journal of Agricultural and Food Chemistry 61: 11645-11652. DOI: 10.1021/jf403918x
Janusz G, Pawlik A, Sulej J, ?widerska-Burek U, Jarosz-Wilko?azka A, Paszczy?ski A. 2017. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews 41: 941-962. DOI: 10.1093/femsre/fux049
Kachiprath B, Solomon S, Jayanath G, Philip R. 2019. Mangrove microflora as potential source of hydrolytic enzymes for commercial applications. Indian Journal of Geo Marine Sciences 48(5): 678-684.
Kumar A, Chandra R. 2020. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6: e03170. DOI: 10.1016/j.heliyon.2020.e03170
Liu G, Zhou J, Meng X, Fu SQ, Wang J, Jin R, Lv H. 2013. Decolorization of azo dyes by marine Shewanella strains under saline conditions. Applied Microbiology and Biotechnology 97: 4187-4197. DOI: 10.1007/s00253-012-4216-8
Mitsch WJ, Gosselink JG. 2015. Wetlands. Wiley, New Jersey.
Ng I, Xu F, Zhang X, Ye C. 2015. Enzymatic exploration of catalase from a nanoparticle producing and biodecolorizing algae Shewanella xiamenensis BC01. Bioresource Technology 184: 429-435. DOI: 10.1016/j.biortech.2014.09.079
Pacheco-Torgal F, Lourenço PB, Labrincha JA, Kumar S, Chindaprasirt P. 2015. Eco-efficient Masonry Bricks and Blocks. Woodhead Publishing, Cambridge. DOI: 10.1016/C2014-0-02158-2
Odeyemi OA, Burke CM, Bolch CJS, Stanley R. 2018. Evaluation of spoilage potential and volatile metabolites production by Shewanella baltica isolated from modified atmosphere packaged live mussels. Food Research International 103: 415-425. DOI: 10.1016/j.foodres.2017.10.068
Riyadi FA, Tahir AA, Yusof N, Sabri NSA, Noor MJMM, Akhir FNMD, Othman N, Zakaria Z, Hara H. 2020. Enzymatic and genetic characterization of lignin depolymerization by Streptomyces sp. S6 isolated from a tropical environment. Scientific Reports 10: 7813. DOI: 10.1038/s41598?020?64817?4
Shen DK, Gu S, Bridgwater AV. 2010. The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydrate Polymers 82: 39-45. DOI: 10.1016/j.carbpol.2010.04.018
Singh R, Shukla A, Tiwari S, Srivastava M. 2014. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews 32: 713-728. DOI: 10.1016/j.rser.2014.01.051
Sinirlioglu ZA, Sinirlioglu D, Akbas F. 2013. Preparation and characterization of stable cross-linked enzyme aggregates of novel laccase enzyme from Shewanella putrefaciens and using malachite green decolorization. Bioresource Technology 146: 807-811. DOI: 10.1016/j.biortech.2013.08.032
Sun C, Zeng X, Lai Q, Wang Z, Shao Z. 2020. Mangrovibacterium lignilyticum sp. nov., a facultatively anaerobic lignin-degrading bacterium isolated from mangrove sediment. International Journal of Systematic and Evolutionary Microbiology 70: 4502-4507. DOI: 10.1099/ijsem.0.004305
Tsegaye B, Balomajumder C, Roy P. 2018. Biodelignification and hydrolysis of rice straw by novel bacteria isolated from wood feeding termite. 3 Biotech: 8(10): 447. DOI: 10.1007/s13205-018-1471-0
Yang YS, Zhou JT, Lu H, Yuan YL, Zhao LH. 2011. Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin. Biodegradation 22: 1017-1027. DOI: 10.1007/s10532-011-9460-6
Zhao A, Zhu J, Ye X, Ge Y, Li J. 2016. Inhibition of biofilm development and spoilage potential of Shewanella baltica by quorum sensing signal in cell-free supernatant from Pseudomonas fluorescens. International Journal of Food Microbiology 230: 73-80. DOI: 10.1016/j.ijfoodmicro.2016.04.015
Zhu J, Huang X, Zhang F, Feng L, Li J. 2015. Inhibition of quorum sensing, biofilm, and spoilage potential in Shewanella baltica by green tea polyphenols. Journal of Microbiology 53(12): 829-836. DOI: 10.1007/s12275-015-5123-3
Zhu J, Zhao A, Feng L, Gao H. 2016. Quorum sensing signals affect spoilage of refrigerated large yellow croaker (Pseudosciaena crocea) by Shewanella baltica. International Journal of Food Microbiology 217: 146-155. DOI: 10.1016/j.ijfoodmicro.2015.10.020

Most read articles by the same author(s)