The oleaginous yeast Pichia manshurica isolated from Lansium domesticum fruit in Thailand and its fatty acid composition of single cell oil

##plugins.themes.bootstrap3.article.main##

SONGSAK PLANONTH
AIYA CHANTARASIRI

Abstract

Abstract. Planonth S, Chantarasiri A. 2022. The oleaginous yeast Pichia manshurica isolated from Lansium domesticum fruit in Thailand and its fatty acid composition of single cell oil. Biodiversitas 23: 801-809. Oleaginous microbes can accumulate intracellular lipids or single cell oils (SCOs) in quantities higher than 20% of their biomass. They can be a sustainable alternative to fossil fuels, biofuels, and oleochemicals. Studies concerning efficient oleaginous yeasts isolated from the natural environments remain scarce. Therefore, this study isolated and screened for efficient oleaginous yeasts from the surfaces of longkong fruit (Lansium domesticum) samples in Thailand. Their intracellular SCOs were extracted using an ultrasonic-assisted extraction (UAE) method and quantitatively analyzed. The SCO-accumulating yeasts (produce the amount of SCOs <20 % of their biomass) genetically identified were Candida jaroonii, Meyerozyma caribbica, Kodamaea ohmeri, and Pichia sp., while the oleaginous yeasts (produce the amount of SCOs >20% of their biomass) identified were Pichia manshurica and Hanseniaspora opuntiae. Several isolated yeasts were designated as rare oleaginous microbes. The P. manshurica strain Y2 was considered as the most effective oleaginous yeast with a SCO content of 43.03% (w/w). The fatty acids in the accumulated SCO of this strain were analyzed by gas chromatography (GC) that consisted of palmitic, stearic, oleic, linoleic, and palmitoleic acids. These fatty acids could be further applied in the production of third-generation biodiesel, cocoa butter equivalents, and related high-value oleochemicals.

##plugins.themes.bootstrap3.article.details##

References
Areesirisuk A, Chiu CH, Yen TB, Liu CH, Guo JH. 2015. A novel oleaginous yeast strain with high lipid productivity and its application to alternative biodiesel production. Appl Biochem Microbiol 51: 411-418. DOI: 10.1134/S0003683815030035.
Ayadi I, Belghith H, Gargouri A, Guerfali M. 2018. Screening of new oleaginous yeasts for single cell oil production, hydrolytic potential exploitation and agro-industrial by-products valorization. Process Saf Environ Prot 119: 104-114. DOI: 10.1016/j.psep.2018.07.012.
Brandenburg J, Blomqvist J, Shapaval V, Kohler A, Sampels S, Sandgren M, Passoth V. 2021. Oleaginous yeasts respond differently to carbon sources present in lignocellulose hydrolysate. Biotechnol Biofuels 14: 124. DOI: 10.1186/s13068-021-01974-2.
Byreddy AR, Gupta A, Barrow CJ, Puri M. 2015. Comparison of cell disruption methods for improving lipid extraction from Thraustochytrid strains. Mar Drugs 13 (8): 5111-5127. DOI: 10.3390/md13085111.
Caporusso A, Capece A, De Bari I. 2021. Oleaginous yeasts as cell factories for the sustainable production of microbial lipids by the valorization of agri-food wastes. Fermentation 7: 50. DOI: 10.3390/fermentation7020050.
Chakrabarti A, Rudramurthy SM, Kale P, Hariprasath P, Dhaliwal M, Singhi S, Rao KLN. 2014. Epidemiological study of a large cluster of fungaemia cases due to Kodamaea ohmeri in an Indian tertiary care centre. Clin Microbiol Infect 20: O83-O89. DOI: 10.1111/1469-0691.12337.
Chantarasiri A. 2020. Species identification of stranded seaweeds on eastern seashores of Thailand and utilization as a sole carbon source for single cell oils synthesized by oleaginous yeasts. Biodiversitas 21: 2353-2361. DOI: 10.13057/biodiv/d210603.
Chantarasiri A, Boontanom P, Siriprom W, Kongsriprapan S. 2021. First report of Geotrichum candidum causing sour rot of longkong fruits (Lansium domesticum) in Southern Thailand. New Dis Rep 43: e12016. DOI: 10.1002/ndr2.12016.
Chebbi H, Leiva-Candia D, Carmona-Cabello M, Jaouani A, Dorado MP. 2019. Biodiesel production from microbial oil provided by oleaginous yeasts from olive oil mill wastewater growing on industrial glycerol. Ind Crops Prod 139: 111535. DOI: 10.1016/j.indcrop.2019.111535.
Corbu V, Vassu T, Csutak O. 2019. Pichia (Kodamaea) ohmeri CMGB-ST19-a new strain with complex biotechnological properties. AgroLife Sci J 8: 77-86.
Cui Y, Blackburn JW, Liang Y. 2012. Fermentation optimization for the production of lipid by Cryptococcus curvatus: use of response surface methodology. Biomass Bioenerg 47: 410-417. DOI: 10.1016/j.biombioe.2012.09.017.
Dey P, Maiti MK. 2013. Molecular characterization of a novel isolate of Candida tropicalis for enhanced lipid production. J Appl Microbiol 114: 1357-1368. DOI: 10.1111/jam.12133.
Diwan B, Gupta P. 2018. Comprehending the influence of critical cultivation parameters on the oleaginous behaviour of potent rotten fruit yeast isolates. J Appl Microbiol 125: 490-505. DOI: 10.1111/jam.13904.
Duarte SH, de Andrade CCP, Ghiselli G, Maugeri F. 2013. Exploration of Brazilian biodiversity and selection of a new oleaginous yeast strain cultivated in raw glycerol. Bioresour Technol 138: 377-381. DOI: 10.1016/j.biortech.2013.04.004.
Enshaeieh M, Abdoli A, Nahvi I. 2013. Medium optimization for biotechnological production of single cell oil using Yarrowia lipolytica M7 and Candida sp.. J Cell Mol Res 5: 17-23.
Giakoumis EG. 2018. Analysis of 22 vegetable oils’ physicochemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation. Renew Energ 126: 403-419. DOI: 10.1016/j.renene.2018.03.057.
Gientka I, Kieliszek M, Jermacz K, B?a?ejak S. 2017. Identification and characterization of oleaginous yeast isolated from kefir and its ability to accumulate intracellular fats in deproteinated potato wastewater with different carbon sources. Biomed Res Int 2017: 6061042. DOI: 10.1155/2017/6061042.
Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: 221-224. DOI: 10.1093/molbev/msp259.
Imanishi Y, Jindamorakot S, Mikata K, Nakagiri A, Limtong S, Potacharoen W, Tanticharoen M, Nakase T. 2008. Two new ascomycetous anamorphic yeast species related to Candida friedrichii-Candida jaroonii sp. nov., and Candida songkhlaensis sp. nov.-isolated in Thailand. Antonie van Leeuwenhoek 94: 267-276. DOI: 10.1007/s10482-008-9242-2.
Jiru TM, Abate D, Kiggundu N, Pohl C, Groenewald M. 2016. Oleaginous yeasts from Ethiopia. AMB Expr 6: 78. DOI: 10.1186/s13568-016-0242-8.
Kanti A, Sukara E, Latifah K, Sukarno N, Boundy-Mills K. 2013. Indonesian oleaginous yeasts isolated from Piper betle and P. nigrum. Mycosphere 4: 1015-1026. DOI: 10.5943/mycosphere/4/5/15.
Khot M, Raut G, Ghosh D, Alarcón-Vivero M, Contreras D, Ravikumar A. 2020. Lipid recovery from oleaginous yeasts: perspectives and challenges for industrial applications. Fuel 259: 116292. DOI: 10.1016/j.fuel.2019.116292.
Kitcha S, Cheirsilp B. 2011. Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia 9: 274-282. DOI: 10.1016/j.egypro.2011.09.029.
Kongruang S, Roytrakul S, Sriariyanun M. 2020. Renewable biodiesel production from oleaginous yeast biomass using industrial wastes. E3S Web Conf 141: 03010. DOI: 10.1051/e3sconf/202014103010.
Koricha AD, Han DY, Bacha K, Bai FY. 2019. Occurrence and molecular identification of wild yeasts from Jimma zone, south west Ethiopia. Microorganisms 7: 633. DOI: 10.3390/microorganisms7120633.
Lamers D, van Biezen N, Martens D, Peters L, van de Zilver E, van Dreumel NJ, Wijffels RH, Lokman C. 2016. Selection of oleaginous yeasts for fatty acid production. BMC Biotechnol 16: 45. DOI: 10.1186/s12896-016-0276-7.
Leesing R, Nontaso N. 2011. Isolation and cultivation of oleaginous yeast for microbial oil production. KKU Res J 16: 112-126.
Limtong S, Kaewwichian R. 2015. The diversity of culturable yeasts in the phylloplane of rice in Thailand. Ann Microbiol 65: 667-675. DOI: 10.1007/s13213-014-0905-0.
Lin CY, Lin BY. 2017. Comparison of fatty acid compositions and fuel characteristics of biodiesels made from Isochrysis galbana lipids and from used cooking oil. J Mar Sci Technol 25 (4): 399-403. DOI: 10.6119/JMST-017-0317-1.
Lopes M, Gomes AS, Silva CM, Belo I. 2018. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. J Biotechnol 265: 76-85. DOI: 10.1016/j.jbiotec.2017.11.007.
Ma'aruf AG, Chung FY, Asyikeen N. 2012. Potential of yeasts isolated from local fruits and bamboo shoot (Bambusa vulgaris) as leavening agent in white bread. Sains Malays 41: 1315-1324.
Mofijur M, Siddiki SYA, Shuvho BA, Djavanroodi F, Fattah IMR, Ong HC, Chowdhury MA, Mahlia TMI. 2021. Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources-a mini-review. Chemosphere 270: 128642. DOI: 10.1016/j.chemosphere.2020.128642.
Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C. 2016. Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539. DOI: 10.3389/fmicb.2016.01539.
Papalexandratou Z, Lefeber T, Bahrim B, Lee OS, Daniel HM, Vuyst LD. 2013. Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiol 35: 73-85. DOI: 10.1016/j.fm.2013.02.015.
Park YK, Dulermo T, Ledesma-Amaro R, Nicaud JM. 2018. Optimization of odd chain fatty acid production by Yarrowia lipolytica. Biotechnol Biofuels. 11: 158. DOI: 10.1186/s13068-018-1154-4.
Patel A, Arora N, Mehtani J, Pruthi V, Pruthi PA. 2017. Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production. Renew Sust Energ Rev 77: 604-616. DOI: 10.1016/j.rser.2017.04.016.
Polburee P, Yongmanitchai W, Lertwattanasakul N, Ohashi T, Fujiyama K, Limtong S. 2015. Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol. Fungal Biol 119: 1194-1204. DOI: 10.1016/j.funbio.2015.09.002.
Qin L, Liu L, Zeng AP, Wei D. 2017. From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Bioresour Technol 245: 1507-1519. DOI: 10.1016/j.biortech.2017.05.163.
Rahmawaty, Frastika S, Rauf A, Batubara R, Harahap FS. 2020. Land suitability assessment for Lansium domesticum cultivation on agroforestry land using matching method and geographic information system. Biodiversitas 21: 3683-3690. DOI: 10.13057/biodiv/d210835.
Ramírez-Castrillón M, Jaramillo-Garcia VP, Rosa PD, Landell MF, Vu D, Fabricio MF, Ayub MAZ, Robert V, Henriques JAP, Valente P. 2017. The oleaginous yeast Meyerozyma guilliermondii BI281A as a new potential biodiesel feedstock: selection and lipid production optimization. Front Microbiol 8:1776. DOI: 10.3389/fmicb.2017.01776.
Robles-Rodríguez CE, Muñoz-Tamayo R, Bideaux C, Gorret N, Guillouet SE, Molina-Jouve C, Roux G, Aceves-Lara CA. 2017. Modeling and optimization of lipid accumulation by Yarrowia lipolytica from glucose under nitrogen depletion conditions. Biotechnol Bioeng 115: 1137-1151. DOI: 10.1002/bit.26537.
Saran S, Mathur A, Dalal J, Saxena RK. 2017. Process optimization for cultivation and oil accumulation in an oleaginous yeast Rhodosporidium toruloides A29. Fuel 188: 324-331. DOI: 10.1016/j.fuel.2016.09.051.
Seo YH, Lee IG, Han JI. 2013. Cultivation and lipid production of yeast Cryptococcus curvatus using pretreated waste active sludge supernatant. Bioresour Technol 135: 304-308. DOI: 10.1016/j.biortech.2012.10.024.
Sirichote A, Puengphian C, Jongpanyalert B, Pisuchpen S, Rugkong A, Chanawirawan S. 2013. Storage quality of longkong (Lansium domesticum Corr.) fruit as affected by ozonated water and sodium hypochlorite pretreatment. In: Acedo AL, Kanlayanarat S (eds) Proceedings of the II Southeast Asia Symposium on Quality Management in Postharvest Systems. Acta Horticulturae 1088, 4-6 December 2013. [Vientiane, Laos]
Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL. 2014. Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32: 1336-1360. DOI: 10.1016/j.biotechadv.2014.08.003.
Souza KST, Schwan RF, Dias DR. 2014. Lipid and citric acid production by wild yeasts grown in glycerol. J Microbiol Biotechnol 24: 497-506. DOI: 10.4014/jmb.1310.10084.
Sreeharsha RV, Mohan SV. 2020. Obscure yet promising oleaginous yeasts for fuel and chemical production. Trends Biotechnol 38: 873-887. DOI: 10.1016/j.tibtech.2020.02.004.
Tapia EV, Anschau A, Coradini ALV, Franco TT, Deckmann AC. 2012. Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening. AMB Expr 2: 64. DOI: 10.1186/2191-0855-2-64.
Te-chato S, Lim M, Masahiro M. 2005. Comparison of cultivar identification methods of longkong, langsat and duku: Lansium spp.. Songklanakarin J Sci Technol 27: 465-472.
Techavuthiporn C. 2018. Langsat-Lansium domesticum. In: Rodrigues S, de Oliveira Silva E, de Brito ES (eds) Exotic Fruits Reference Guide. Academic Press, London. DOI: 10.1016/B978-0-12-803138-4.00036-8.
Vasconcelos B, Teixeira JC, Dragone G, Teixeira JA. 2019. Oleaginous yeasts for sustainable lipid production-from biodiesel to surf boards, a wide range of “green” applications. Appl Microbiol Biotechnol 103: 3651-3667. DOI: 10.1007/s00253-019-09742-x.
Vincent M, Hung HC, Baran PRM, Azahari AS, Adeni DSA. 2018. Isolation, identification and diversity of oleaginous yeasts from Kuching, Sarawak, Malaysia. Biodiversitas 19: 1266-1272. DOI: 10.13057/biodiv/d190412.
Vivas R, Beltran C, Munera MI, Trujillo M, Restrepo A, Garcés C. 2016. Fungemia due to Kodamaea ohmeri in a young infant and review of the literature. Med Mycol Case Rep 13: 5-8. DOI: 10.1016/j.mmcr.2016.06.001.
Wang M, Wei Y, Ji B, Nielsen J. 2020. Advances in metabolic engineering of Saccharomyces cerevisiae for cocoa butter equivalent production. Front Bioeng Biotechnol 8: 594081. DOI: 10.3389/fbioe.2020.594081.

Most read articles by the same author(s)