Diversity and activity of amylase-producing bacteria isolated from mangrove soil in Thailand

##plugins.themes.bootstrap3.article.main##

RATIMA KLINFOONG
CHANUNLAYA THUMMAKASORN
SUNISA UNGWIWATKUL
PARIMA BOONTANOM
AIYA CHANTARASIRI

Abstract

Abstract. Klinfoong R, Thummakasorn C, Ungwiwatkul S, Boontanom P, Chantarasiri A. 2022. Diversity and activity of amylase-producing bacteria isolated from mangrove soil in Thailand. Biodiversitas 23: 5519-5531. Mangrove forests are a potential ecosystem for the isolation of various economic enzymes derived from mangrove-associated bacteria. The knowledge of amylase-producing bacteria isolated from mangrove forests in the Southeast Asian region has been scarce. This study aimed to investigate the isolation, genetic identification, and activity characterization of amylase-producing bacteria from mangrove soils in Thailand. The amylase-producing bacteria isolated from mangrove soils in the present were genetically belong to the genera Bacillus, Desulfurella, Peribacillus, Priestia, and Pseudomonas. Several amylase-producing bacteria such as Bacillus proteolyticus, Desulfurella, Pseudomonas entomophila, and Pseudomonas putida found in this study have hardly ever been reported. The Bacillus paralicheniformis strain DNP0507 was the most active amylolytic bacterium with 2.395 ± 0.133 U/mg of amylase activity. The optimum temperature and pH for amylolytic activity were determined to be 50°C at a pH of 7.0 with a thermal stability range of 20-60°C at a neutral pH of 7.0-8.0. The enzyme activity was significantly enhanced by Cu2+, Co2+, and Pb2+ and was inhibited considerably by a chelating agent EDTA. Finally, the most active amylolytic B. paralicheniformis strain DNP0507 could be applied in baking industries, food industries, and starchy waste valorization.

##plugins.themes.bootstrap3.article.details##

References
Abdel-Fattah YR, Soliman NA, El-Toukhy NM, El-Gendi H, Ahmed RS. 2013. Production, Purification, and characterization of thermostable ?-amylase produced by Bacillus licheniformis isolate AI20. J Chem 2013: article ID 673173. DOI: 10.1155/2013/673173.
Afrisham S, Badoei-Dalfard A, Namaki-Shoushtari A, Karami Z. 2016. Characterization of a thermostable, CaCl2-activated and raw-starch hydrolyzing alpha-amylase from Bacillus licheniformis AT70: Production under solid state fermentation by utilizing agricultural wastes. J Mol Catal B Enzym 132: 98-106. DOI: 10.1016/j.molcatb.2016.07.002.
Al Farraj DA, Kumar TSJ, Vijayaraghavan P, Elshikh MS, Alkufeidy RM, Alkubaisi NA, Alshammari MK. 2020. Enhanced production, purification and biochemical characterization of therapeutic potential fibrinolytic enzyme from a new Bacillus flexus from marine environment. J King Saud Univ Sci 32: 3174-3180. DOI: 10.1016/j.jksus.2020.09.004.
Alves KJ, da Silva MCP, Cotta SR, Ottoni JR, van Elsas JD, de Oliveira VM, Andreote FD. 2020. Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Braz J Microbiol 51: 217-228. DOI: 10.1007/s42770-019-00162-7.
Alves PDD, Siqueira FF, Facchin S, Campolina C, Horta R, Victória JMN, Kalapothakis E. 2014. Survey of microbial enzymes in soil, water, and plant microenvironments. Open Microbiol J 8: 25-31.
Ashraf MA, Arshad MI, Rahman S, Khan A. 2018. Characterization of moderately thermostable ?-amylase-producing Bacillus licheniformis from decaying potatoes and sweet potatoes. BioResources 13 (3): 4931-4945.
Ashwini K, Gaurav K, Karthik L, Bhaskara Rao KV. 2011. Optimization, production and partial purification of extracellular ?-amylase from Bacillus sp. marini. Arch Appl Sci Res 3 (1): 33-42.
Bekler FM, Yalaz S, Güven RG, Güven K. 2019. Optimization of the thermostable alkaline and Ca-dependent ?-amylase production from Bacillus paralicheniformis by statistical modeling. J Serb Chem Soc 84 (10): 1093-1104. DOI: 10.2298/JSC190227021B.
Benjamin S, Smitha RB, Jisha VN, Pradeep S, Sajith S, Sreedevi S, Priji P, Unni KN, Sarath Josh MK. 2013. A monograph on amylases from Bacillus spp. Adv Biosci Biotechnol 4: 227-241. DOI: 10.4236/abb.2013.42032.
Bhaskar N, Sudeepa ES, Rashmi HN, Selvi AT. 2007. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour Technol 98: 2758-2764. DOI:10.1016/j.biortech.2006.09.033.
Bhatt K, Lal S, Srinivasan R, Joshi B. 2020. Bioconversion of agriculture wastes to produce ?-amylase from Bacillus velezensis KB 2216: Purification and characterization. Biocatal Agric Biotechnol 28: 101703. DOI: 10.1016/j.bcab.2020.101703.
Boontanom P, Chantarasiri A. 2020. Short communication: Diversity of culturable epiphytic bacteria isolated from seagrass (Halodule uninervis) in Thailand and their preliminary antibacterial activity. Biodiversitas 21 (7): 2907-2913. DOI: 10.13057/biodiv/d210706.
Boži? N, Rozeboom HJ, Lon?ar N, Slavi? MS, Janssen DB, Vuj?i? Z. 2020. Characterization of the starch surface binding site on Bacillus paralicheniformis ?-amylase. Int J Biol Macromol 165 (Part A): 1529-1539. DOI: 10.1016/j.ijbiomac.2020.10.025.
Boži? N, Ruiz J, López-Santín J, Vuj?i? Z. 2011. Production and properties of the highly efficient raw starch digesting ?-amylase from a Bacillus licheniformis ATCC 9945a. Biochem Eng J 53: 203-209. DOI: 10.1016/j.bej.2010.10.014.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72 (1-2): 248-254. DOI: 10.1016/0003-2697(76)90527-3.
Chantarasiri A. 2015. Aquatic Bacillus cereus JD0404 isolated from the muddy sediments of mangrove swamps in Thailand and characterization of its cellulolytic activity. Egyptian J Aquat Res 41: 257-264. DOI: 10.1016/j.ejar.2015.08.003.
Chantarasiri A. 2021a. Enrichment and identification of phenanthrene-degrading bacteria isolated from the oil-stained engine sediment in the mangrove swamps of Thailand. Appl Sci Eng Prog 14 (2): 206-218. DOI: 10.14416/j.asep.2020.04.003.
Chantarasiri A. 2021b. Shewanella baltica strain JD0705 isolated from the mangrove wetland soils in Thailand and characterization of its ligninolytic performance. Biodiversitas 22 (1): 354-361. DOI: 10.13057/biodiv/d220143.
Chantarasiri A. 2021c. Diversity and activity of aquatic cellulolytic bacteria isolated from sedimentary water in the littoral zone of Tonle Sap Lake, Cambodia. Water 13: 1797. DOI: 10.3390/w13131797.
Deb P, Talukdar SA, Mohsina K, Sarker PK, Sayem SMA. 2013. Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. SpringerPlus 2: 154.
Dias ACF, Andreote FD, Dini-Andreote F, Lacava PT, Sá ALB, Melo IS, Azevedo JL, Araújo WL. 2009. Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. World J Microbiol Biotechnol 25: 1305-1311. DOI 10.1007/s11274-009-0013-7.
Divyashree MS, Shamala TR. 2010. Extractability of polyhydroxyalkanoate synthesized by Bacillus flexus cultivated in organic and inorganic nutrient media. Indian J Microbiol 50 (1): 63-69. DOI: 10.1007/s12088-010-0013-1.
Dunlap CA, Kwon SW, Rooney AP, Kim SJ. 2015. Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Int J Syst Evol Microbiol 65: 3487-3492. DOI: 10.1099/ijsem.0.000441.
Elechi DP, Jason OC, Onyewuchi A, Akuma O. 2022. Isolation and identification of amylase-producing microorganisms. GSC Biol Pharm Sci 20 (1): 76-82. DOI: 10.30574/gscbps.2022.20.1.0304(2021).
Ferbiyanto A, Rusmana I, Raffiudin R. 2015. Characterization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. Hayati J Biosci 22 (4): 197-200. DOI: 10.1016/j.hjb.2015.07.001.
Florentino AP, Brienza C, Stams AJM, Sánchez-Andrea I. 2016. Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments. Int J Syst Evol Microbiol 66: 1249-1253. DOI: 10.1099/ijsem.0.000866.
Friess DA. 2016. Mangrove forests. Curr Biol 26: 739-755.
Gatson JW, Benz BF, Chandrasekaran C, Satomi M, Venkateswaran K, Hart ME. 2006. Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. Int J Syst Evol Microbiol 56: 1475-1484. DOI: 10.1099/ijs.0.63946-0.
Ghazouani A, El-Gayar K, Abada E. 2020. Molecular characterization of gene encoding halo tolerant amylase of Bacillus paralicheniformis isolated from Jazan region. Mod J Microb Biol 2: 1. DOI: 10.25259/MJMB_2_2020.
Gopinath SCB, Anbu P, Md Arshad MK, Lakshmipriya T, Voon CH, Hashim U, Chinni SV. 2017. Biotechnological processes in microbial amylase production. Biomed Res Int 2017: 1272193. DOI: 10.1155/2017/1272193.
Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27 (2): 221-224. DOI: 10.1093/molbev/msp259.
Harefa MS, Nasution Z, Mulya MB, Maksum A. 2022. Mangrove species diversity and carbon stock in silvofishery ponds in Deli Serdang District, North Sumatra, Indonesia. Biodiversitas 23 (2): 655-662. DOI: 10.13057/biodiv/d230206.
Joshi N, Andhare P, Marchawala F, Bhattacharya I, Upadhyay D. 2021. A study on amylase: Review. Int J Biol Pharm Allied Sci 10 (4): 333-340. DOI: 10.31032/IJBPAS/2021/10.4.1037.
Kafilzadeh F, Dehdari F. 2015. Amylase activity of aquatic actinomycetes isolated from the sediments of mangrove forests in south of Iran. Egypt J Aquat Res 41: 197-201. DOI: 10.1016/j.ejar.2015.04.003.
Kafilzadeh F, Dehdari F, Kadivar E, Shiraz OB. 2012. Isolation of amylase producing aquatic actinomycetes from the sediments of mangrove forests in south of Iran. Afr J Microbiol Res 6 (33): 6281-6285. DOI: 10.5897/AJMR12.969.
Kanimozhi M, Johny M, Gayathri N, Subashkumar R. 2014. Optimization and production of ?-amylase from halophilic Bacillus species isolated from mangrove soil sources. J Appl Environ Microbiol 2 (3): 70-73. DOI:10.12691/jaem-2-3-2.
Khannous L, Jrad M, Dammak M, Miladi R, Chaaben N, Khemakhem B, Gharsallah N, Fendri I. 2014. Isolation of a novel amylase and lipase-producing Pseudomonas luteola strain: study of amylase production conditions. Lipids Health Dis 13: 9. DOI:10.1186/1476-511X-13-9.
Khiftiyah AM, Hanifah NN, Bachruddin M, Sholichah M, Istiqomah S, Dewi SR, Rahayu T, Prasetya IAW, Marjayandari L, Aini N, Tsana I, Triwahyuni D, Fatimah, Ni’matuzahroh. 2018. Isolation and screening of potential proteolytic and amylolytic microbes from Wonorejo Mangrove forest soil, Surabaya, Indonesia. AIP Conf Proc 2019: 040014. DOI: 10.1063/1.5061884.
Kizhakedathil MPJ, Chandrasekaran SD. 2018. Media optimization for extracellular amylase production by Pseudomonas balearica vitps19 using response surface methodology. Front Biol 13: 123-129. DOI: 10.1007/s11515-018-1485-3.
Liu M, Huang H, Bao S, Tong Y. 2019. Microbial community structure of soils in Bamenwan mangrove wetland. Sci Rep 9: 8406. DOI: 10.1038/s41598-019-44788-x.
Liu Y, Du J, Lai Q, Zeng R, Ye D, Xu J, Shao Z. 2017. Proposal of nine novel species of the Bacillus cereus group. Int J Syst Evol Microbiol 67: 2499-2508. DOI: 10.1099/ijsem.0.001821.
Luang-In V, Yotchaisarn M, Saengha W, Udomwong P, Deeseenthum S, Maneewan K. 2019. Isolation and identification of amylase-producing bacteria from soil in Nasinuan Community Forest, Maha Sarakham, Thailand. Biomed & Pharmacol J 12 (3): 1061-1068.
Maalej H, Hmidet N, Ghorbel-Bellaaj O, Nasri M. 2013. Purification and biochemical characterization of a detergent stable ?-amylase from Pseudomonas stutzeri AS22. Biotechnol Bioprocess Eng 18: 878-887. DOI: 10.1007/s12257-012-0862-z.
Manohar P, Shanthini T, Gothandam KM, Kannan VR, Ramesh N. 2017. Enhanced amylolytic activity of intracellular ?-amylase produced by Bacillus tequilensis. J Microbiol Biotech Food Sci 6 (6) 1314-1318. DOI: 10.15414/jmbfs.2017.6.6.1314-1318.
Martínez-Hidalgo P, Flores-Félix JD, Sánchez-Juanes F, Rivas R, Mateos PF, Regina IS, Peix Á, Martínez-Molina E, Igual JM, Velázquez E. 2021. Identification of canola roots endophytic bacteria and analysis of their potential as biofertilizers for canola crops with special emphasis on sporulating bacteria. Agronomy 11: 1796. DOI: 10.3390/agronomy11091796.
Miller G. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426-428.
Mishra S, Behera N. 2008. Amylase activity of a starch degrading bacteria isolated from soil receiving kitchen wastes. Afr J Biotechnol 7 (18): 3326-3331.
Mishra RR, Swain MR, Dangar TK, Thatoi H. 2012. Diversity and seasonal fluctuation of predominant microbial communities in Bhitarkanika, a tropical mangrove ecosystem in India. Rev Biol Trop 60 (2): 909-924.
Mitsch WJ, Gosselink JG. 2015. Wetlands. John Wiley & Sons, Inc., New Jersey.
Mulet M, Gomila M, Lemaitre B, Lalucat J, García-Valdés E. 2012. Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov. Syst Appl Microbiol 35: 145-149. DOI: 10.1016/j.syapm.2011.12.003.
My NTH, Loan TT, Thuoc DV. 2022. High amylase production by a novel strain of Bacillus amyloliquefaciens M37 isolated from Can Gio mangrove forest, Vietnam. Biointerface Res Appl Chem 12 (4): 4675-4685. DOI: 10.33263/BRIAC124.46754685.
Ortakaya V, Fincan SA, Enez B. 2017. ?-amylase from Bacillus simplex-production, characterization and partial purification. Fresenius Environ Bull 26 (7): 4446-4455.
Pramono H, Mariana A, Ryandini D, Sudiana E. 2021. Short Communication: Diversity of cellulolytic bacteria isolated from coastal mangrove sediment in Logending Beach, Kebumen, Indonesia. Biodiversitas 22 (4): 1869-1878. DOI: 10.13057/biodiv/d220433.
Pranay K, Padmadeo SR, Jha V, Prasad B. 2019. Screening and identification of amylase producing strains of Bacillus. J Appl Biol Biotechnol 7 (4): 57-62. DOI: 10.7324/JABB.2019.70409.
Raju EVN, Divakar G. 2013. Production of amylase by using Pseudomonas aeruginosa isolated from garden soil. Int J Adv Pharm Biol Chem 2 (1): 50-56.
Rehman A, Saeed A. 2015. Isolation and screening of amylase producing Bacillus species from soil. Int J Adv Res 3 (4): 151-164.
Roy P, Chatterjee S, Saha NC, Gantait VV. 2020. Characterization of a starch hydrolysing Bacillus flexus U8 isolated from rhizospheric soil of the paddy plants. Proc Natl Acad Sci, India, Sect B Biol Sci 90 (5): 1075-1081. DOI: 10.1007/s40011-020-01176-0.
Sajedi RH, Naderi-Manesh H, Khajeh K, Ahmadvand R, Ranjbar B, Asoodeh A, Moradian F. 2005. A Ca-independent ?-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme Microb Technol 36: 666-671. DOI: 10.1016/j.enzmictec.2004.11.003.
Salem K, Elgharbi F, Hlima HB, Perduca M, Sayari A, Hmida-Sayari A. 2020. Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca2+ independent Bacillus subtilis ?-amylase. Biotechnol Prog 2020: e2964. DOI: 10.1002/btpr.2964.
Saravanakumar K, Rajendran N, Kathiresan K, Chen J. 2016. Bioprospects of microbial enzymes from mangrove associated fungi and bacteria. In: Kim SK, Toldrá F (eds) Advances in Food and Nutrition Research. Elsevier, Amsterdam. DOI: 10.1016/bs.afnr.2016.08.003.
Saxena R, Singh R. 2011. Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp. Braz J Microbiol 42: 1334-1342.
Shafiei M, Ziaee AA, Amoozegar MA. 2011. Purification and characterization of an organic-solvent-tolerant halophilic ?-amylase from the moderately halophilic Nesterenkonia sp. strain F. J Ind Microbiol Biotechnol 3 (2): 275-281. DOI: 10.1007/s10295-010-0770-1.
Sharma A, Satyanarayana T. 2013. Microbial acid-stable ?-amylases: Characteristics, genetic engineering and applications. Process Biochem 48 (2): 201-211. DOI: 10.1016/j.procbio.2012.12.018.
Silaban S, Marika BD, Simorangkir M. 2020. Isolation and characterization of amylase-producing amylolytic bacteria from rice soil samples. J Phys: Conf Ser 1485: 012006. DOI:10.1088/1742-6596/1485/1/012006.
Thomas N, Lucas R, Bunting P, Hardy A, Rosenqvist A, Simard M. 2017. Distribution and drivers of global mangrove forest change, 1996-2010. PLoS ONE 12 (6): e0179302. DOI: 10.1371/journal.pone.0179302.
Tiwari S, Shukla N, Mishra P, Gaur R. 2014. Enhanced production and characterization of a solvent stable amylase from solvent tolerant Bacillus tequilensis RG-01: Thermostable and surfactant resistant. Sci World J 2014: Article ID 972763. DOI: 10.1155/2014/972763.
Trivedi N, Reddy CRK, Lali AM. 2016. Marine microbes as a potential source of cellulolytic enzymes. In: Kim SK, Toldrá F (eds) Advances in Food and Nutrition Research. Elsevier, Amsterdam. DOI: 10.1016/bs.afnr.2016.07.002.
Vallet-Gely I, Novikov A, Augusto L, Liehl P, Bolbach G, Péchy-Tarr M, Cosson P, Keel C, Caroff M, Lemaitre B. 2010. Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Appl Envir Microbiol 76 (3): 910-921. DOI: 10.1128/AEM.02112-09.
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. 2020. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 104: 7745-7766. DOI: 10.1007/s00253-020-10811-9.
Wu X, Wang Y, Tong B, Chen X, Chen J. 2018. Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423. Int J Biol Macromol 109: 329-337. DOI: 10.1016/j.ijbiomac.2017.12.004.
Zhao J, Lan X, Su J, Sun L, Rahman E. 2008. Isolation and identification of an alkaliphilic Bacillus flexus XJU-3 and analysis of its alkaline amylase. Acta Microbiol Sin 48 (6): 750-756.

Most read articles by the same author(s)