Morphological responses of six sorghum varieties on cadmium-contaminated soil

##plugins.themes.bootstrap3.article.main##

NUR AZIZAH USWATUN HASANAH
EDI PURWANTO
PUJI HARSONO
SAMANHUDI
AMALIA TETRANI SAKYA

Abstract


Abstract. Hasanah NAU, Purwanto E, Harsono P, Samanhudi, Sakya AT. 2023. Morphological responses of six sorghum varieties on cadmium-contaminated soilBiodiversitas 24: 3903-3915Six sorghum varieties were planted on cadmium-contaminated soil and characterized from April to July 2020 at a rice field in Balecatur Gamping, Yogyakarta. The objectives of this experiment were to characterize themorphological responses of six sorghum varieties and select a variety with a high biomass and Cd uptake fora potential phytoremediator. This experiment used six sorghum varieties, namely Super-1, Samurai-1, Suri-3, Numbu, Kawali, and Hitam, following completely randomized design procedures with four replications. The observation of morphological and agronomical characteristics focused on ten plants as the sample of each plot. The result showed that there were differences in the morphological and agronomical characteristics among six sorghum varieties. Varieties were assessed in terms of distinctness and grouped based on the time of panicle emergence, plant height, panicle shape, and caryopsis color. There were threeclasses as follows: Class 1, i.e., time of panicle emergence: very early (Super-1, Suri-3, Numbu, and Hitam); plant height: long (Super-1), medium (Suri-3), short (Numbu and Hitam); panicle shape: panicle broader in the upper part (Numbu), symmetrical (Super-1 and Suri-3), pyramidal (Hitam); caryopsis color: white (Super-1), grayish orange (Suri-3 and Hitam), yellowish orange (Numbu). Class 2, time of panicle emergence: early (Samurai-1); plant height: medium (Samurai-1); panicle shape: panicle broader in the lower part (Samurai-1); caryopsis color: yellowish orange (Samurai-1). Class 3, time of panicle emergence: medium (Kawali); plant height: medium (Kawali); panicle shape: panicle broader in the lower part (Kawali); caryopsis color: yellowish white (Kawali). Assessment of agronomical characteristics revealed that fresh plant weight had a significant positive correlation with plant height R1, plant height R5, stem diameter, leaf bladewidth, thousand-grain weight, and stem sugar content. Several varieties, namely Super-1, Samurai-1 and Kawali, were found to have excellent agronomical characteristics to provide a solid varietal basis for selecting varieties as phytoremediators.


##plugins.themes.bootstrap3.article.details##

References
Abdel-Sabour, M. E.,et al. 2000. Heavy metals accumulation in rice and sorghum crops grown on contaminated soils in Egypt. Minufiya Journal of Agricultural Research (Egypt) 25: 1157-1167.
Almodares, A. and Darany, S. M. M. 2006. Effects of planting date and time of nitrogen application on yield and sugar content of sweet sorghum. Journal of Environmental Biology 27: 601–605.
Angelova, V. R. et al. 2011. Use of Sorghum Crops for in Situ Phytoremediation of Polluted Soils. Journal of Agricultural Science and Technology 1: 693–702.
BPS. 2020. Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi 2018-2020. Available at: https://www.bps.go.id/indicator/53/1498/1/luas-panen-produksi-dan-produktivitas-padi-menurut-provinsi.html.
Carne, G. et al. 2021. Mass balance approach to assess the impact of cadmium decrease in mineral phosphate fertilizers on health risk: The case-study of French agricultural soils. Science of the Total Environment. DOI: 10.1016/j.scitotenv.2020.143374.
Choi, S. C. et al. 2019. Antioxidant Activity and Contents of Total Phenolic Compounds and Anthocyanins According to Grain Colour in Several Varieties of Sorghum bicolor (L.) Moench. Cereal Research Communications. DOI: 10.1556/0806.47.2019.14.
Demarco, C. F. et al. 2018. In situ phytoremediation characterization of heavy metals promoted by Hydrocotyle ranunculoides at Santa Bárbara stream, an anthropogenic polluted site in southern of Brazil. Environmental Science and Pollution Research. DOI: 10.1007/s11356-018-2836-y.
Dias, M. C. et al. 2013. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum. DOI: 10.1007/s11738-012-1167-8.
Durrishahwar, D. et al. 2012. Characterization of sorghum germplasm for various morphological and fodder yield parameters. African Journal of Biotechnology. DOI: 10.5897/AJB11.4000.
Epelde, L. et al. 2009. Soil microbial community as bioindicator of the recovery of soil functioning derived from metal phytoextraction with sorghum. Soil Biology and Biochemistry. DOI: 10.1016/j.soilbio.2008.04.001.
Erakhrumen, E. and Agbontalor, A. 2007. Phytoremediation: An Environmentally Sound Technology for Pollution Prevention, Control and Remediation in Developing Countries. Educational Research and Reviews 2: 151–156.
Eryilmaz, F. 2006. The Relationships between Salt Stress and Anthocyanin Content in Higher Plants. Biotechnology & Biotechnological Equipment. DOI: 10.1080/13102818.2006.10817303.
Gano, B. et al. 2021. Article adaptation responses to early drought stress of west africa sorghum varieties. Agronomy. DOI: 10.3390/agronomy11030443.
Genchi, G. et al. 2020. The Effects of Toxicity. International Journal of Environmental Research and Public Health. DOI: 10.3390/ijerph17113782.
Guo, F. et al. 2018. Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation. Ecotoxicology and Environmental Safety. DOI: 10.1016/j.ecoenv.2017.10.043.
Hariprasanna, K. 2015. DUS Testing in Sorghum. DOI: 10.13140/RG.2.1.4154.2489.
Hariprasanna, K. 2018. Distinctness, uniformity, and stability (DUS) testing in sorghum, Breeding Sorghum for Diverse End Uses. Elsevier Ltd. DOI: 10.1016/B978-0-08-101879-8.00021-8.
Hasanah, N. A. U. et al. 2021. Evaluation of growth and biomass production of sorghum on cadmium contaminated paddy field. IOP Conference Series: Earth and Environmental Science, 637(1). DOI: 10.1088/1755-1315/637/1/012062.
Hussain, B. et al. 2021. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Science of the Total Environment. DOI: 10.1016/j.scitotenv.2020.142188.
Jia, W. et al. 2016. Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils. Environmental Science and Pollution Research. DOI: 10.1007/s11356-016-7083-5.
Jeon, D. et al. 2020. Effect of salt stress on the anthocyanin content and associated genes in Sorghum bicolor L. Korean Journal of Agricultural Science. DOI: 10.7744/kjoas.20200003.
Jönsson, E. H. L. and Asp, H. 2011. Influence of nitrogen supply on cadmium accumulation in potato tubers. Journal of Plant Nutrition. DOI: 10.1080/01904167.2011.536877.
Khasanah, U. et al. 2021. Assessment Of Heavy Metals Pollution On Rice Field In Sidoarjo Regency Industrial Area. Jurnal Teknik Kimia 15: 73–81.
Li, H. et al. 2020. Input of Cd from agriculture phosphate fertilizer application in China during 2006–2016. Science of the Total Environment. DOI: 10.1016/j.scitotenv.2019.134149.
Liao, P. et al. 2021. Liming increases yield and reduces grain cadmium concentration in rice paddies: a meta-analysis. Plant Soil. DOI: 10.1007/s11104-021-05004-w.
Liu, D. L. et al. 2010. Soil cadmium regulates antioxidases in Sorghum. Agricultural Sciences in China. DOI: 10.1016/S1671-2927(09)60240-6.
Liu, Z. et al. 2009. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator-Lonicera japonica Thunb. Journal of Hazardous Materials. DOI: 10.1016/j.jhazmat.2009.03.090.
Martiwi, I. N. A. et al. 2020. Morphological Variability and Taxonomic Relationship of Sorghum bicolor (L.) Moench Accessions Based on Qualitative Characters. Annual Research & Review in Biology. DOI: 10.9734/arrb/2020/v35i630234.
Muro-González, D. A. et al. 2020. Morphological, physiological, and genotoxic effects of heavy metal bioaccumulation in Prosopis laevigata reveal its potential for phytoremediation. Environmental Science and Pollution Research. DOI: 10.1007/s11356-020-10026-5.
Niño-Savala, A. G. et al. 2019. Cadmium pollution from phosphate fertilizers in arable soils and crops: An overview. Frontiers of Agricultural Science and Engineering. DOI: 10.15302/J-FASE-2019273.
Nookabkaew, S. et al. 2016. Concentrations of Trace Elements in Organic Fertilizers and Animal Manures and Feeds and Cadmium Contamination in Herbal Tea (Gynostemma pentaphyllum Makino). Journal of Agricultural and Food Chemistry. DOI: 10.1021/acs.jafc.5b06160.
Oliver, M. A. and Gregory, P. J. 2015. Soil, food security and human health: A review. European Journal of Soil Science. DOI: 10.1111/ejss.12216.
Park, H. J. et al. 2021. Cadmium phytoavailability from 1976 through 2016: Changes in soil amended with phosphate fertilizer and compost. Science of the Total Environment. DOI: 10.1016/j.scitotenv.2020.143132.
Rahman, A. et al. 2020. Utilization of Saveral Types of Activated Charcoal As Absorbent Of Heavy Metal Cadmium (Cd) in Medan City Drainage Sediment Soil As Planting Media. Jurnal Agroteknologi dan Ilmu Pertanian. DOI: 10.31289/agr.v5i1.4240.
Rascio, N. and Navari-Izzo, F. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Science. DOI: 10.1016/j.plantsci.2010.08.016.
Raza, A. et al. 2020. Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms. Biology. DOI: 10.3390/biology9070177.
Rosariastuti, M. R.et al. 2020. Kabupaten Karanganyar Fitoremediation Technology For Heavy Metal Pollution Handling In Agricultural Land At Kebakkramat Sub-district Karanganyar City. Jurnal Litbang Provinsi Jawa Tengah 18: 25–36.
Sarma, H. 2011. Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology. DOI: 10.3923/jest.2011.118.138.
Sathya, A. et al. 2016. Cultivation of sweet sorghum on heavy metalcontaminated soils by phytoremediation approach for production of bioethanol. Bioremediation and Bioeconomy. Elsevier Inc. DOI: 10.1016/B978-0-12-802830-8.00012-5.
Seshadri, B. et al. 2016. Phosphorus-cadmium interactions in paddy soils. Geoderma. DOI: 10.1016/j.geoderma.2015.11.029.
Sharma, P. and Pandey, S. 2014. Status of Phytoremediation in World Scenario. International Journal of Environmental Bioremediation & Biodegradation. DOIi: 10.12691/ijebb-2-4-5.
Sherameti, I. and Varma, A. 2010. Soil Biology. Springer, New York. DOI: 10.1007/978-3-642-02436-8.
Soudek, P. et al. 2014. Accumulation of heavy metals using Sorghum sp. Chemosphere. DOI: 10.1016/j.chemosphere.2013.09.079.
Sugianto, S. et al. 2015. Genetic Variability And Heritability Of Agronomic Characters Some Genotypes Sweet Sorghum (Sorghum bicolor (L.) Moench) BATAN Collections. JOM.Faperta 2: 1-15.
Sukarjo, S. et al. 2021. Penilaian Spasial Potensi Risiko Ekologis Logam Berat di Lapisan Olah Tanah Sawah DAS Serayu Hilir, Jawa Tengah. Jurnal Tanah dan Iklim. DOI: 10.21082/jti.v45n1.2021.69-77.
Trikoesoemaningtyas, T. et al. 2018. Kendali Genetik Karakter Morfologi dan Agronomi pada Tiga Populasi Sorgum (Sorghum bicolor (L.) Moench). Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy). DOI: 10.24831/jai.v45i3.18387.
Vki, S. S., Selvi, B. and Kavithamani, D. 2021. Phenotypic characterization of sorghum ( Sorghum bicolor ( L .) Moench ) germplasm accessions for various DUS traits. Journal of Pharmacognosy and Phytochemistry 10: 105-110.
Yuan, X. et al. 2019. A real filed phytoremediation of multi-metals contaminated soils by selected hybrid sweet sorghum with high biomass and high accumulation ability. Chemosphere. DOI: 10.1016/j.chemosphere.2019.124536.
Zhong, L. et al. 2019. Phytoremediation potential of pterocypsela laciniata as a cadmium hyperaccumulator. Environmental Science and Pollution Research. DOI: 10.1007/s11356-019-04702-4.
Zhu, T. et al. 2021. Progress in our understanding of plant responses to the stress of heavy metal cadmium. Plant Signaling and Behavior. DOI: 10.1080/15592324.2020.1836884.
Zhuang, P. et al. 2009. Removal of metals by sorghum plants from contaminated land. Journal of Environmental Sciences. DOI: 10.1016/S1001-0742(08)62436-5.
Zwolak, A. et al. 2019. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: a Review. Water, Air, and Soil Pollution. DOI: 10.1007/s11270-019-4221-y.

Most read articles by the same author(s)

1 2 > >>