Genetic diversity of Coffea canephora Pierre ex A. Froehner in Temanggung District, Indonesia based on molecular marker RAPD

##plugins.themes.bootstrap3.article.main##

INTAN WIDYA PANGESTIKA
ARI SUSILOWATI
EDI PURWANTO

Abstract

Abstract. Authors. 2021. Genetic diversity of Coffea canephora Pierre ex A. Froehner in Temanggung District, Indonesia based on molecular marker RAPD. Biodiversitas 22: 4775-4783. Temanggung District in Central Java Province, Indonesia is one of robusta coffee production centers. The condition of coffee plantations in Temanggung shows variations in some morphological traits. Variations in coffee phenotypes are considered less profitable for farmers because they produce yields of undesirable quality in the global market. This study aimed to evaluate the genetic diversity of robusta coffee in Temanggung. The coffee plants were derived from six villages located at two levels of altitude. The morphological traits were observed from canopy width, trunk diameter, plant height, cherry volume, and bean volume, while the biochemical compositions were determined by caffeine content and brew’s pH value. The molecular assays were performed using PCR-RAPD with ten primers and species identification was based on the ITS rDNA. Our finding showed a variation in all morphological characters and biochemical compositions based on the LSD test 5%. The molecular marker RAPD revealed the genetic diversity by showing the DNA polymorphism levels of 95%, with the genetic similarity coefficient ranged from 0.35 to 0.86. The species identification also demonstrated that our robusta coffee was 97.11-99.70% similar to robusta coffee MK615737.1 from Philippines and robusta coffee DQ153593.1 from Cameroon. Thus, genetic diversity on six populations of robusta coffee was found, along with its variations on phenotypes which might lead the coffee yield quality to become uneven.

##plugins.themes.bootstrap3.article.details##

References
Abdulhafiz F, Kayat F, Zakaria S. 2018. Effect of gamma irradiation on the morphological and physiological variation from In vitro individual shoot of banana cv. Tanduk (Musa spp.). J Plant Biotechnol 45 (2): 140–145. DOI: 10.5010/JPB.2018.45.2.140.
Ardana IK. 2019. Sustainability of Temanggung coffee farming system in the perspective of Geographical Indications. Jurnal Littri 25 (2): 69-80. DOI: 10.21082/littri.v25n2.2019.69-80.
Atinafu G, Mohammed H. 2017. Agro-morphological characterization of Sidama Coffee (Coffea arabica L.) germplasm accession under its specialty coffee growing area, Awada, Southern Ethiopia. IJRSSET 4 (12): 11–23. ISSN: 2349-476X.
Avelino J, Barboza B, Araya JC, Fonseca C, Davrieux F, Guyot B, Cilas C. 2005. Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. J Sci Food Agric 85 (11): 1869–1876. DOI: 10.1002/jsfa.2188.
Awati MG, Tambat BS, D’souza GF, Venkataramanan D, Kumar MU, Anand CG, Raghuramulu Y. 2018. Assessing genetic diversity using RAPD molecular markers in Coffea canephora Pierre ex. Froehner (robusta coffee): a step towards crop improvement. Int.J.Curr.Microbiol.App.Sci 7 (12): 1704–1714. DOI: 10.20546/ijcmas.2018.712.198.
Badan Pusat Statistik Provinsi Jawa Tengah. 2019. Produksi Tanaman Perkebunan Menurut Kabupaten/Kota dan Jenis Tanaman di Provinsi Jawa Tengah (Issue Oktober). https://jateng.bps.go.id.[Indonesian]
Bertrand B, Alpizar E, Lara L, SantaCreo R, Hidalgo M, Quijano JM, Montagnon C, Georget F, Etienne H. 2011. Performance of Coffea arabica F1 hybrids in agroforestry and full-sun cropping systems in comparison with American pure line cultivars. Euphytica 181: 147–158. DOI: 10.1007/s10681-011-0372-7.
Bicho NC, Leitão AE, Ramalho JC, de Alvarenga NB, Lidon FC. 2013. Impact of roasting time on the sensory profile of Arabica and Robusta coffee. Ecol. Food Nutr 52 (2): 163–177.
Cheng T, Xu C, Lei L, Li C, Zhang Y, Zhou S. 2016. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol Ecol Resour. 16 (1): 138–149. DOI: 10.1111/1755-0998.12438.
Damatta FM, Avila RT, Cardoso AA, Martins SCV, Ramalho JC. 2018. Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: a review. J. Agric. Food Chem. 66 (21): 5264–5274. DOI: 10.1021/acs.jafc.7b04537.
Devi AR, Susilowati A, Setyaningsih R. 2019. Morphology, molecular identification, and pathogenicity of Vibrio spp. on blood clam (Anadara Granosa) in Yogyakarta, Indonesia tourism beach areas. BIODIVERSITAS 20 (10): 2890–2896. DOI: 10.13057/biodiv/d201016.
Dias R, Benassi M. 2015. Discrimination between arabica and robusta coffees using hydrosoluble compounds: is the efficiency of the parameters dependent on the roast degree? Beverages 1 (3): 127–139. DOI: 10.3390/beverages1030127.
Direktorat Jenderal Kekayaan Intelektual. 2018. Indikasi Geografis Terdaftar. https://dgip.go.id.[Indonesian]
Direktorat Jenderal Perkebunan. 2021. Produksi Kopi Menurut Provinsi di Indonesia, 2017-2021. https://www.pertanian.go.id. [Indonesian]
Diviš P, Po?ízka J, K?íkala J. 2019. The effect of coffee beans roasting on its chemical composition. Potr. S. J. F. Sci 13 (1): 344–350. DOI: 10.5219/1062.
Due MS, Susilowati A, Yunus A. 2019. The effect of gamma rays irradiation on diversity of Musa paradisiaca var. sapientum as revealed by ISSR molecular marker. BIODIVERSITAS 20 (5): 1416–1422. DOI: 10.13057/biodiv/d200534.
Gichimu BM, Gichuru EK, Mamati GE, Nyende A B. 2014. Biochemical composition within Coffea arabica cv. Ruiru 11 and its relationship with cup quality. J. Food Res. 3 (3): 31-44. DOI: 10.5539/jfr.v3n3p31.
Girma B, Gure A, Wedajo F. 2020. Influence of altitude on Caffeine, 5-Caffeoylquinic Acid, and Nicotinic Acid Contents of arabica coffee varieties. J. Chem. 1–7. DOI: 10.1155/2020/3904761.
He?imovi? I, Belš?ak-Cvitanovi? A, Horži? D, Komes D. 2011. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 129 (3): 991–1000. DOI: 10.1016/j.foodchem.2011.05.059.
Hue T. 2005. Genetic variation in cultivated coffee (Coffea arabica L.) accessions in Northern New South Wales Australia. [Thesis]. Southern Cross University, Australia.
ICO. 2021a. Coffee production by exporting countries. In International Coffee Organization (Issue February). http://www.ico.org/prices/po-production.pdf
ICO. 2021b. Monthly export statistics (Members & Non-Members)-January 2021 (Issue February). http://www.ico.org/prices/m1-exports.pdf
Imru NO, Wogderess M D, Gidada T V. 2015. A study of the effects of shade on growth, production and quality of coffee (Coffea arabica) in Ethiopia. Int. J. Agric. Sci. 5 (5): 748–752.
IPGRI. 1996. Descriptors for Coffee (Coffea spp. and Psilanthus spp.). International Plant Genetic Resources Instit. ISBN: 978-92-9043-305-7.
Khapre Y, Kyamuhangire W, Kihara Njoroge E, Kathurima CW. 2017. Analysis of the diversity of some arabica and robusta coffee from Kenya and Uganda by sensory and biochemical components and their correlation to taste. IOSR-JESTFT 11 (10): 39–43. DOI: 10.9790/2402-1110023943.
Komaria N, Suratno, Sudarti, Dafik. 2021. The effect of fermentation on acidity, caffeine and taste cascara robusta coffee. J. Phys.: Conf. Ser. 1751 (1): 1–8. DOI: 10.1088/1742-6596/1751/1/012062.
Maramis RK, Citraningtyas G, Wehantouw F. 2013. Analisis kafein dalam kopi bubuk di Kota Manado menggunakan spektrofotometri UV-Vis. Pharmacon 2 (4): 122–128.[Indonesian]
Maurin O, Davis AP, Chester M, Mvungi EF, Jaufeerally-Fakim Y, Fay MF. 2007. Towards a phylogeny for Coffea (Rubiaceae): Identifying well-supported lineages based on nuclear and plastid DNA sequences. Ann. Bot. 100 (7): 1565–1583. DOI: 10.1093/aob/mcm257.
Mishra MK, Sandhyarani N, Suresh N, Satheesh Kumar S, Soumya PR, Yashodha MH, Bhat A, Jayarama. 2012. Genetic diversity among Indian coffee cultivars determined via molecular markers. J. Crop Improv 26 (6): 727–750. DOI: 10.1080/15427528.2012.696085.
Mkumbe BS, Sajidan, Pangastuti A, Susilowati A. 2018. Phylogenetic analysis based on internal transcribed spacer region (ITS1-5.8S-ITS2) of Aspergillus niger producing phytase from Indonesia. AIP Conference Proceedings. International Conference on Science and Applied Science (ICSAS), Surakarta, 12 May 2018. DOI: 10.1063/1.5054419.
Oelviani R, Hermawan A. 2018. Kebutuhan teknologi kopi di Jawa Tengah (studi kasus komoditas kopi di Kabupaten Temanggung). Inovasi & Kreasi Memajukan Jawa Tengah. Agustus. 524–533.[Indonesian]
Omingo DO, Omondi CO, Cheserek J, Runo S, Okun D. 2017. Diversity analysis of selected coffee genotypes using microsatellites and random amplified polymorphic DNA in Kenya. Int. J. Biotechnol. Food Sci. 5 (May): 1–9.
Panaligan AC, Baltazar MD, Alejandro GJD. 2021. Molecular authentication of commercially cultivated coffee (Coffea spp.) in the Philippines using DNA barcodes. Intl J Agric Biol 25 (1): 227–230. DOI: 10.17957/IJAB/15.1660.
Pemerintah Kabupaten Temanggung. 2020. Kopi Temanggung Berpotensi Ekspor. Himpunan Berita Temanggung (HEBAT). http://hebat.temanggungkab.go.id/. [Indonesian]
Pinasthika D, Setyono J S. 2015. Tipologi klaster kopi di Kabupaten Temanggung. Jurnal Teknik PWK 4 (4): 622–635.[Indonesian]
Prastowo E, Arimarsetiowati R. 2019. Morphological variations of robusta coffee as a response to different altitude in Lampung. Pelita Perkebunan 35 (2): 103–118.
Ramadiana S, Hapsoro D, Yusnita Y. 2018. Morphological variation among fifteen superior Robusta coffee clones in Lampung Province, Indonesia. BIODIVERSITAS 19 (4): 1475–1481. DOI: 10.13057/biodiv/d190438.
Somporn C, Kamtuo A, Theerakulpisut P, Siriamornpun S. 2012. Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea arabica L . cv . Catimor) harvested from north-eastern Thailand. J Sci Food Agric, July. DOI: 10.1002/jsfa.5568.
Sridevi V, Giridhar P. 2013. Influence of altitude variation on trigonelline content during ontogeny of Coffea canephora fruit. Journal of Food Studies 2 (1): 62–74. DOI: 10.5296/jfs.v2i1.3747.
Thomas SC. 2011. Genetic vs. Phenotypic Responses of Trees to Altitude. Tree Physiology. 31 (11): 1161–1163. DOI: 10.1093/treephys/tpr105.
Tolessa K, D’heer J, Duchateau L, Boeckx P. 2016. Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. J. Sci. Food Agric. 97 (9): 2849–2857. DOI: 10.1002/jsfa.8114.
Tran HTM, Vargas CAC, Slade Lee L, Furtado A, Smyth H, Henry R. 2017. Variation in bean morphology and biochemical composition measured in different genetic groups of arabica coffee (Coffea arabica L.). Tree Genet. Genomes 13 (3): 1-14. DOI: 10.1007/s11295-017-1138-8.
Tshilenge P, Nkongolo K K, Mehes M, Kalonji A. 2009. Genetic variation in Coffea canephora L. (var. robusta) accessions from the founder gene pool evaluated with ISSR and RAPD. Afr. J. Biotechnol. 8 (3): 380–390. www.academicjournals.org/AJB.
Worku M, de Meulenaer B, Duchateau L, Boeckx P. 2018. Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Res Int. 105: 278–285. DOI: 10.1016/j.foodres.2017.11.016.

Most read articles by the same author(s)

1 2 3 > >>