New specific primer matK and rbcL region for DNA barcode pitcher plant Nepenthes spathulata

##plugins.themes.bootstrap3.article.main##

MUHAMMAD NANDA UTAMA
NITA ETIKAWATI
SUGIYARTO
ARI SUSILOWATI

Abstract

Abstract. Utama MN, Etikawati N, Sugiyarto, Susilowati A. 2024. New specific primer matK and rbcL region for DNA barcode pitcher plant Nepenthes spathulata. Biodiversitas 25: 2515-2523. The matK and rbcL genes were proposed as the preferred plant barcoding loci by The Consortium for the Barcode of Life (CBOL). DNA barcoding efficiently identifies samples at the species level using short standard DNA sequences. The identification disclosure needs is an important basis given the confusion in systematics in Nepenthes spathulata. Therefore, this study aims to design matK and rbcL region-specific primers for DNA barcoding pitcher plants. The primary design uses Primer3Plus with a blueprint from the GenBank KDQ007081.1 for matK and MH346374.1 for rbcL. Following testing primary candidates with Oligo Analyzer and Primer-BLAST, the primers MkNs1, and RbNs4 were selected as the optimal criteria based on the values of ?G and primer specificity. Optimization of annealing temperature with PCR gradient shows that the temperature range 52-57°C produces a good band for both regions and corresponds to the matK and rbcL region with product sizes of 800-900 bp from seven samples, which could be observed from the gel electrophoresis. Sequence similarity using blast-N, the matK sequence has similarity to the N. spathulata matK gene of 99.64% and 99.63% for the rbcL gene of N. ventricosa x N. alata. This MkNs1 and RbNs4 primer can be used to discover the identity of N. spathulata and the Nepenthes genus.

##plugins.themes.bootstrap3.article.details##

References
Abbas, B., Kabes, R. J., Mawikere, N. L., Ruimassa, R. M. R., & Maturbong, R. A. (2020). DNA barcode of metroxylon sagu and others palm species using matk gene. Biodiversitas, 21(9), 4047–4057. https://doi.org/10.13057/biodiv/d210916
Aboul-Maaty, N. A.-F., & Oraby, H. A.-S. (2019). Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre, 43(1), 1–10. https://doi.org/10.1186/s42269-019-0066-1
Ahmed, S. (2022). DNA Barcoding in Plants and Animals: A Critical Review. Preprints, January. https://doi.org/10.20944/preprints202201.0310.v1
Antil, S., Abraham, J. S., Sripoorna, S., Maurya, S., Dagar, J., Makhija, S., Bhagat, P., Gupta, R., Sood, U., Lal, R., & Toteja, R. (2023). DNA barcoding, an effective tool for species identification: a review. Molecular Biology Reports, 50(1), 761–775. https://doi.org/10.1007/s11033-022-08015-7
Bustin, S., & Huggett, J. (2017). qPCR primer design revisited. Biomolecular Detection and Quantification, 14(March), 19–28. https://doi.org/10.1016/j.bdq.2017.11.001
CBOL Plant Working Group. (2009). A DNA barcode for land plants. PNAS, 31(106), 12794–12797. https://doi.org/10.1073/pnas.0905845106
Chac, L. D., & Thinh, B. B. (2023). Species Identification through DNA Barcoding and Its Applications: A Review. Biology Bulletin, 50(6), 1143–1156. https://doi.org/10.1134/S106235902360229X
Clarke, C. (2018). Nepenthes spathulata. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2018-1.RLTS.T39697A143964604.en
Clarke, C., & Moran, J. (2001). Nepenthes of Sumatra and Peninsular Malaysia. Natural History Publications (Borneo), Kinabalu Malaysia.
Cornwell, W. K., Pearse, W. D., Dalrymple, R. L., & Zanne, A. E. (2019). What we (don’t) know about global plant diversity. Ecography, 42(11), 1819–1831. https://doi.org/10.1111/ecog.04481
Delghandi, M., Delghandi, M. P., & Goddard, S. (2022). The Significance of PCR Primer Design in Genetic Diversity Studies: Exemplified by Recent Research into the Genetic Structure of Marine Species. In Chhandak Basu (Ed.), PCR Primer DesignDesign (Third Edit, pp. 3–16). Humana Press. https://doi.org/https://doi.org/10.1007/978-1-0716-1799-1
Garafutdinov, R. R., Galimova, A. A., & Sakhabutdinova, A. R. (2020). The influence of quality of primers on the formation of primer dimers in PCR. Nucleosides, Nucleotides and Nucleic Acids, 39(9), 1251–1269. https://doi.org/10.1080/15257770.2020.1803354
Goldstein, P. Z., & Desalle, R. (2010). Integrating DNA barcode data and taxonomic practice: Determination, discovery, and description. Bioessay, 135–147. https://doi.org/10.1002/bies.201000036
Green, S. J., Venkatramanan, R., & Naqib, A. (2015). Deconstructing the polymerase chain reaction: Understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PLoS ONE, 10(5), 1–21. https://doi.org/10.1371/journal.pone.0128122
Hebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218
Hernawati, Zuhud, E. A., Prasetyo, L. B., & Soekmadi, R. (2022). Synopsis of Sumatran Nepenthes (Indonesia). Biodiversitas, 23(8), 4243–4255. https://doi.org/10.13057/biodiv/d230848
Ho, V. T., Tran, T. K. P., Vu, T. T. T., & Widiarsih, S. (2021). Comparison of matK and rbcL DNA barcodes for genetic classification of jewel orchid accessions in Vietnam. Journal of Genetic Engineering and Biotechnology, 19(1), 1–8. https://doi.org/10.1186/s43141-021-00188-1
Ismail, M., Ahmad, A., Nadeem, M., Javed, M. A., Khan, S. H., Khawaish, I., Sthanadar, A. A., Qari, S. H., Alghanem, S. M., Khan, K. A., Khan, M. F., & Qamer, S. (2020). Development of DNA barcodes for selected Acacia species by using rbcL and matK DNA markers. Saudi Journal of Biological Sciences, 27(12), 3735–3742. https://doi.org/10.1016/j.sjbs.2020.08.020
Jamdade, R., Upadhyay, M., Al Shaer, K., Al Harthi, E., Al Sallani, M., Al Jasmi, M., & Al Ketbi, A. (2021). Evaluation of arabian vascular plant barcodes (rbcL and matK): Precision of unsupervised and supervised learning methods towards accurate identification. Plants, 10(12). https://doi.org/10.3390/plants10122741
Jürgens, A., Witt, T., Sciligo, A., & El-Sayed, A. M. (2015). The effect of trap colour and trap-flower distance on prey and pollinator capture in carnivorous Drosera species. Functional Ecology, 29(8), 1026–1037. https://doi.org/10.1111/1365-2435.12408
Kolter, A., & Gemeinholzer, B. (2020). Plant DNA barcoding necessitates marker-specific efforts to establish more comprehensive reference databases. Genome, 64(3), 265–298. https://doi.org/10.1139/gen-2019-0198
Kumar, A., & Chordia, N. (2015). In Silico PCR Primer Designing and Validation. Methods in Molecular Biology, 143–151. https://doi.org/10.1007/978-1-4939-2365-6
Kumar, P., Chatli, M. K., Mehta, N., Singh, P., Malav, O. P., & Verma, A. K. (2017). Meat analogues: Health promising sustainable meat substitutes. Critical Reviews in Food Science and Nutrition, 57(5), 923–932. https://doi.org/10.1080/10408398.2014.939739
Li, H., Xiao, W., Tong, T., Li, Y., Zhang, M., Lin, X., Zou, X., Wu, Q., & Guo, X. (2021). The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-021-81087-w
Liber, M., Tomov, T. E., Tsukanov, R., Berger, Y., Popov, M., Khara, D. C., & Nir, E. (2018). Study of DNA Origami Dimerization and Dimer Dissociation Dynamics and of the Factors that Limit Dimerization. Small, 14(23), 1–9. https://doi.org/10.1002/smll.201800218
Mansur, M., Salamah, A., Mirmanto, E. D. I., & Brearley, F. Q. (2023). Diversity , Ecology and Conservation Status of Nepenthes In West Sumatra Province , Indonesia. Biotropia, 30(2), 220–231. https://doi.org/10.11598/btb.2023.30.2.1896
Mathew, D., & Ramesh, G. A. (2020). A universal system for matK gene based diagnostic markers to identify the species in Cucurbitaceae. Indian Journal of Horticulture, 77(4), 733–735. https://doi.org/10.5958/0974-0112.2020.00106.1
Owczarzy, R., Tataurov, A. V, Wu, Y., Manthey, J. A., Mcquisten, K. A., Almabrazi, H. G., Pedersen, K. F., Lin, Y., Garretson, J., Mcentaggart, N. O., Sailor, C. A., Dawson, R. B., & Peek, A. S. (2008). IDT SciTools?: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Research, 36, 163–169. https://doi.org/10.1093/nar/gkn198
Padial, J. M., & De la Riva, I. (2021). A paradigm shift in our view of species drives current trends in biological classification. Biological Reviews, 96(2), 731–751. https://doi.org/10.1111/brv.12676
Panjkovich, A., & Melo, F. (2005). Comparison of different melting temperature calculation methods for short DNA sequences. Bioinformatics, 21(6), 711–722. https://doi.org/10.1093/bioinformatics/bti066
Perkovich, C. L., Addesso, K. M., Basham, J. P., Fare, D. C., Youssef, N. N., & Oliver, J. B. (2022). Effects of Color Attributes on Trap Capture Rates of Chrysobothris femorata (Coleoptera: Buprestidae) and Related Species. Environmental Entomology, 51(4), 737–746. https://doi.org/10.1093/ee/nvac038
Poovitha, S., Stalin, N., Balaji, R., & Parani, M. (2015). Multi-locus DNA barcoding identifies matK as suitable marker for species identification in Hibiscus L. Sundar. Genome, 2, 1–20. https://doi.org/10.1139/gen-2015-0205
Rodríguez, A., Rodríguez, M., Córdoba, J. J., & Andrade, M. J. (2015). Design of Primers and Probes for Quantitative Real-Time PCR Methods BT - PCR Primer Design (C. Basu (ed.); pp. 31–56). Springer New York. https://doi.org/10.1007/978-1-4939-2365-6_3
Rouhan, G., & Gaudeul, M. (2021). Plant Taxonomy: A Historical Perspective, Current Challenges, and Perspective. In Molecular Plant Taxonomy: Methods and Protocols (Second Edi). Humana Press. https://doi.org/10.2307/4440844
Sayers, E. W., Beck, J., Bolton, E. E., Bourexis, D., Brister, J. R., Canese, K., Comeau, D. C., Funk, K., Kim, S., Klimke, W., Marchler-Bauer, A., Landrum, M., Lathrop, S., Lu, Z., Madden, T. L., O’Leary, N., Phan, L., Rangwala, S. H., Schneider, V. A., … Sherry, S. T. (2021). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 49(D1), D10–D17. https://doi.org/10.1093/nar/gkaa892
Siswanto, T., Sianipar, N. F., Warnars, H. L. H. S., & Prabowo, H. (2022). Comparison of Ncbi Primer-Blast and Primer3Plus for Determination Dna Primer Design of Typhonium flagelliforme Plant. ICIC Express Letters, 16(8), 905–912. https://doi.org/10.24507/icicel.16.08.905
Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3 — new capabilities and interfaces. Nucleic Acids Research, 40(15), 1–12. https://doi.org/10.1093/nar/gks596.

Most read articles by the same author(s)

1 2 3 4 5 6 > >>