Minimal number of morphoagronomic characters required for the identification of pineapple (Ananas comosus) cultivars in peatlands of Riau, Indonesia




Abstract. Rosmaina, Elfianis R, Almaksur A, Zulfahmi. 2021. Minimal number of morphoagronomic characters required for the identification of pineapple (Ananas comosus) cultivars in peatlands of Riau, Indonesia. Biodiversitas 22: 3854-3862. Pineapple (Ananas comosus L Merr)  is a tropical fruit that has high economic value. In Riau Province, Indonesia, pineapples grow and produce well on various types of land, including the highly acidic peatland. There are many types of pineapples grown by  from generation to generation, but so far, there have been no reports regarding the diversity of pineapples in peatlands. This study aimed to determine the minimal number of characters distinguishing pineapple morphological and agronomic characters in peatlands. The observations were done on 24 local genotypes of pineapple in peatlands. Characterization were carried out on 49 morphological and agronomic characters according to the Pineapple descriptor from the International Board for Plant Genetic Resources (IBPGRI). The data were analyzed by Multivariate Analysis, in which the principal components analysis was used for qualitative and quantitative traits. Based on the results of this study, there were at least 12 characters proposed to describe pineapple in peatlands, viz. seven qualitative characters (fruit base leaf color (collar), fruit shape, bractea color, fruit eye profile, fruit eye surface, flesh color, crown attachment to fruit) and five quantitative characters (fruit weight, fruit flesh weight, plant height, number of leaves and leaf length). Out of the 49 traits observed,  12 selected characters can be used as a minimal number of characters that can be used to identify pineapple cultivars on peatland. The findings of this research are rewarding for the conservation and management of genetic resources, selection, and breeding activities of pineapple plants.


Adje CAO, Achigan-Dako EG, Coppens d’Eeckenbrugge G, Yedomonhan H. and Agbangla C. 2019. Morphological Characterization Of Pineapple (Ananas Comosus) Genetic Resources From Benin. Fruits 74(4), 167-179. DOI: 10.17660/Th2019/74.4.3
Banda TD and Kumarasamy M. 2020. Application of Multivariate Statistical Analysis in The Development of a Surrogate Water Quality Index (WQI) For South African Watersheds. Water. 12:1584. Doi:10.3390/W12061584.
Bartholomew DP, Hawkins RA, and Lopez JA. 2012. Hawaii Pineapple: The Rise and Fall of an Industry. Hortscience 47(10):1390-1398
Batista RO, Silva LC, Moura LM, Souza MH, Carneiro PCS, Filho JLSC, And Carneiro JES. 2017. Inheritance of Resistance to Fusarium Wild in Common Bean. Euphytica 213: 133-144
Brewbaker JL and Gorrez DD. 1967. Genetics of Self-Incompatibility in The Monocot Genera, Ananas (Pineapple) and Gasteria. American Journal of Botany 54:611-616
Brush R, Ballian D, Bogunic F, Bobinac M, Idzotic M. 2011. Leaflet Morphometric Variation of Service Trees (Sorbus Domestica L) In the Balkan Peninsula. Plant Biosystems. 145:278-285. Doi:10.1080/11263506.2010.549660.
Burhooa and Ranghoo-Sanmukhiya. 2012. Evaluation of Different Pineapple (Ananas Comosus Merr. L) Varieties Using Morphological and Genetic Markers in Mauritius. Biotechnology 11 (5): 272-279.
Cabral JRS, Matos AP, Junghans DT, And Souza FVD. 2009. Pineapple Genetic Improvement in Brazil. Acta Horticulture 822:39-46
Candido WS, Castoldi R, Santos LS, Tobar-Tosse DE, Soares PLM and Braz LT. 2017 Genetic Parameters of Resistance to Meloidogyne Incognita In Melon. Ciência Rural 47: E20151147
Chan YK. 1993. Recent Advancements in Hybridization and Selection of Pineapple in Malaysia. Acta Horticulturae 334:33-44
Chan, Y. K. (1993). Recent Advancement in Hybridization and Selection of Pineapple in Malaysia. Acta Horticulturae,334: 33-44. Doi:10.17660/Actahortic.1993.334.3
Chen Li-Yu, Vanburen R, Paris M, Zhou H, Zhang X, Wai CM, Yan H, Chen S, Alonge M, Ramakrishnan S, Liao Z, Liu J, Lin J, Yue J, Fatima M, Lin Z, Zhang J, Huang L, Wang H, Hwa TY, Kao SM, Choi JY, Sharma A, Song J, Wang L, Yim, WC, Chusman JC, Paull RE, Matsumoto T, Qin Y, Wu Q, Wang J, Yu Q, Wu J, Zhang S, Boche P, Tung CW, Wang Ming-Li, Coppen d’Eeckenbrugge G, Sanewski GM, Purugganan MD, Schatz MC, Bennetzen JL, Lexer C. and Ming R. 2019. The Bracteatus Pineapple Genome and Domestication of Clonally Propagated Crops. Nature Genetics. 51:1549-1558.
Coelho CJ, Bombardelli RGH, Schulze GS, Caires EF and Matiello RR. 2019. Genetic Control of Aluminum Tolerance In Tropical Maize Germplasm. Bragantia 78: 71-81
Collins JL and Kerns KR.1946. Inheritance Of Three Leaf Types In The Pineapple. Journal Of Heredity 37: 123-128
Coppens d’Eeckenbrugge G, Duval MF and Van Miegroet F. 1992. Fertility and Self-Incompatibility in The Genus Ananas. Acta Hortic. 334: 45-52
Coppens D'Eeckenbrugge G and Leal F. 2018. Morphology, Anatomy and Taxonomy. In Sanewski GM, Bartholomew DP And Paull RE (Eds) The Pineapple: Botany, Production and Uses. CABI, Wallingford, P. 11-31.
Coppens, d’Eeckenbrugge G, and Sanewski G. 2011. Leaf Margin in Pineapple. Newsletter Of The Pineapple Working Group, International Society For Horticultural Science Issue No.18:32-37 Http://Www.Ishs-Horticulture.Org/Workinggroups/Pineapple/Pinenews18.Pdf
de Fatima Machadoa C, Souza FVD, Cabral JRS, da Silva Ledo CA, de Matos AP, and Ritzinger A. 2011. Cluster Analysis Using Quantitative, Qualitative And Molecular Traits For The Study Of The Genetic Diversity In Pineapple Genotypes. Proc.7th international pineapple symposium Acta Hort. 902: 159-161
de Lira Junior JS, Bezerra JEF and de Andrade EGT. 2021. Genetic Control of Leaf Spinescence In BRS Imperial, Perola And Pico De Rosa Pineapple Cultivars. Crop Breeding And Applied Biotechnology 21(1): E33492112. Doi.Org/10.1590/1984-70332021v21n1a2
Food and Agriculture Organization (FAO). 2020. Http://Www.Fao.Org/Faostat/En/#Data/QC
Gonzales LS, Rodrigues R, Junior AT, Karasawa M, Sudre CP. 2009. Heirloom Tomato Gene Bank: Assessing Genetic Divergence Based On Morphological, Agronomic And Molecular Data Using A Ward-Modified Location Model. Genetics And Molecular Research 8: 364-374.
Griffiths AJF, Gelbart WM, Miller JH, Et Al. Modern Genetic Analysis. New York: W. H. Freeman; 1999. Solved Problem. Available From: Https://Www.Ncbi.Nlm.Nih.Gov/Books/NBK21317/
Hadiati S, Purnomo S, Meldia Y, Sukmayadi I and Kartono. 2003. Karakterisasi dan Evaluasi Beberapa Aksesi Nenas. J. Hort. 13(3):157-168
Hernita D, Salvia E, Bobihoe J. 2019. Characterization of Morphology and Potensial Of Pineapple Genetic Resources in Peatland of Jambi Province. Journal of Tropical Horticulture. 2 (1): 24-28
Hu J, Chang X, Zhang Y. 2021. The Pineapple MADS-Box Gene Family and The Evolution Of Early Monocot Flower. Sci Rep 11, 849. doi.Org/10.1038/S41598-020-79163-80
IBPGR (International Board for Plant Genetic Resources) 1991. Descriptor for Pineapple. Vella delle sette chiese 142. Rome Italy
Morison, DF. 1978. Multivariate Statistical Methods. Mcgraw Hill Publishing Co. Singapura
Ortiz R, de La-Flor FD, Alvarado G, Crossa J. 2010. Classifying Vegetable Genetic Resources. A Case Study With Domesticated Capsicum Spp. Scientia Horticulturae 126: 186-191.
Poljak I, Kajba D, Ljibic I, Idzotic M. 2015. Morphological Variability of Leaves of Sorbus Domestica L. In Croatin. Acta Societatis Botanicorum Poloniae. 84:249-259. Doi:10.5586/Asbp.2015.023
Reinhardt DH, Cabral JRS, Matos AP and Junghans DT. 2012. 'BRS Ajubá', A New Pineapple Cultivar Resistant to Fusariosis and Adapted to Subtropical Conditions. Acta Horticulturae 928: 75-79
Rodriguez-Alfonso D, Isidron-Perez M, Barrios O, Fundora Z, Hormaza JI, Grajal-Martin MJ, Herrera-Isidron L. 2020. Minimal Morphoagronomic Descriptors For Cuban Pineapple Germplasm Characterisation. Horticultural science (Prague), 47: 28-35. Doi.Org/10.17221/27/2019-HORTSCI
Rohaeni WR and Yunani N. 2017. Comparative Analysis Result Of Local Paddy Kinship Based On Quantitative and Qualitative Characters. Agric 29: 89-102.
Rosmaina, Syafrudin, Hasrol, Yanti F, Juliyanti and Zulfahmi. 2017. Estimation of Variability, Heritability and Genetic Advance Among Local Chili Pepper Genotypes Cultivated in Peat Lands. Bulgarian Journal Of Agricultural Science, 22 (3): 431–436.
Silva RS, Moura EF, Farias-Neto JT , Ledo CAS And Sampaio JE. 2017. Selection of Morphoagronomic Descriptors for The Characterization of Accessions of Cassava of The Eastern Brazilian Amazon. Genetics and Molecular Research 16 (2): Gmr16029595. Doi.Org/10.4238/Gmr16029595
Silva WCJ, Carvalho SIC, and Duarte JB. 2013. Identification of Minimum Descriptors for Characterization of Capsicum Spp. Germplasm. Horticultura Brasileira 31: 190-202
Singh K, Sharma YP, Gairola S. 2020. Morphological Characterization of Wild Rosa L. Germplasm from The Western Himalaya, India. Euphytica 216:41. Doi.Org/10.1007/S10681-020-2567-2
Souza EH, Matos AP, Souza FVD, Costa Júnior DS, Trocoli RO and Carvalho Costa MAP. 2011. Evaluation of Ornamental Pineapple Hybrids For Resistance to Fusarium Subglutinans F. Sp. Ananas. Acta Horticulturae 902: 381-386.
Sripaoraya S. 2009. Pineapple Hybridization and Selection in Thailand. Proc. VIth IS On Pineapple. Ed: D.H.R.C. Reinhardt Acta Hort. 822: 57-62
Sudre CP, Goncalves LSA, Rodrigues R, Juniar AT, Riva-Souza EM, Bento CS. 2010.Variability in Domesticated Capsicum Spp. As Assessed By Morphological And Agronomic Data In Mixed Staatistical Analysis. Genetics And Molecular Research 9: 283-294
Urasaki N, Goeku S, Kaneshima R, Takamine T, Tarora K, Takeuchi M, Moromizato C, Yonamine K, Hosaka F, Terakami S, Matsumura H Yamamoto T And Shoda M. 2015. Leaf Margin Phenotype-Specific Restriction-Site-Associated DNA-Derived Markers For Pineapple (Ananas Comosus L.). Breeding Science 65: 276-284.
Ventura JA, Costa H, Cabral JRS and Matos AP. 2019. ‘Vitória’: New Pineapple Cultivar Resistant To Fusariosis. Acta Horticulturae 822: 51-56.
Yadav P, Saxena RR, Sahu D And Mehta N .2017. Genetics Of Qualitative Traits In Linseed (Linum Usitatissimum L.). Electronic Journal of Plant Breeding 8: 398-403.