Response of morpho-physiological traits to drought stress and screening of curly pepper (Capsicum annuum) genotypes for drought tolerance

##plugins.themes.bootstrap3.article.main##

ROSMAINA
AHMAD RIDHO
ZULFAHMI

Abstract

Abstract. Rosmaina, Ridho A, Zulfahmi. 2022. Response of morpho-physiological traits to drought stress and screening of curly pepper (Capsicum annuum) genotypes for drought tolerance. Biodiversitas 23: 5469-5480. Developing drought-tolerant genotypes are required to face drought condition that often occurs. The study aimed was to assess the growth, biomass, yield traits, and gas exchange of fifteen curly pepper (Capsicum annuum L.) genotypes under normal and drought-stress conditions and to determine the key traits as indicators for selecting and identifying the drought-tolerant curly pepper genotypes. Fifteen curly pepper genotypes were cultivated under normal and drought-stress conditions. Twenty-one morphological and physiological traits were recorded in the reproductive phase. The data obtained were subjected to analysis of variance, Principal Component Analysis (PCA), and UPGMA dendrogram cluster analysis. This study showed that drought stress conditions significantly reduced plant growth, biomass, yield characters, photosynthesis rate, stomatal conductance, transpiration rate, and mesophyll conductance compared to normal conditions. Based on PCA analysis, stomatal limitation, mesophyll and stomatal conductances, root length, photosynthesis rate, fruit weight per plant, chlorophyll b, number of fruit, and transpiration rate were established as indicators for screening drought tolerant genotypes. The UIN-70 and UIN-65 were highly drought-tolerant genotypes according to the MFVD index. UPGMA dendrogram displayed clustering of the curly pepper genotypes consistent with the genotype's cluster based on the MFVD index. This study's findings can be utilized to improve curly pepper's drought tolerance in the future.

##plugins.themes.bootstrap3.article.details##

References
Abreha KB, Enyew M, Carlsson AS, Vetukuri RR, Feyissa T, Motlhaodi T, Ng’uni D, Geleta M. 2022. Sorghum in dryland: Morphological, physiological, and molecular responses of sorghum under drought stress. Planta 255: 1-23. DOI: 10.1007/s00425-021-03799-7.
Afsar S, Bibi G, Ahmad R, Bilal M, Naqvi TA, Baig A, Shah MM, Huang B, Hussain J. 2020. Evaluation of salt tolerance in Eruca sativa accessions based on morpho-physiological traits. PeerJ 8: e9749. DOI: 10.7717/peerj.9749.
Ahmed HGM-D, Zeng Y, Yang X, Anwaar HA, Mansha MZ, Hanif ChMS, Ikram K, Ullah A, Alghanem SMS. 2020. Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage. Saudi J Biol Sci 27: 2116-2123. DOI: 10.1016/j.sjbs.2020.06.019.
Allahverdiyev TI, Talai JM, Huseynova IM, Aliyev JA. 2015. Effect of drought stress on some physiological parameters, yield, yield components of durum (Triticum durum desf.) and bread (Triticum aestivum L.) wheat genotypes. Ekin J Crop Breed Genetic 1: 50-62.
Almuwayhi MA. 2021. Impact of water deficit on correlations and changes of some physiological traits of sweet pepper (Capsicum annuum). Afr J Agric Res 17: 247-254. DOI: 10.5897/AJAR2020.15141.
Arnon DI. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24: 1-15. DOI: 10.1104/pp.24.1.1.
Baath GS, Rocateli AC, Kakani VG, Singh H, Northup BK, Gowda PH, Katta JR. 2020. Growth and physiological responses of three warm-season legumes to water stress. Sci Rep 10: 12233. DOI: 10.1038/s41598-020-69209-2.
Baccari S, Elloumi O, Chaari-Rkhis A, Fenollosa E, Morales M, Drira N, Ben AF, Fki L, Munné-Bosch S. 2020. Linking leaf water potential, photosynthesis and chlorophyll loss with mechanisms of photo- and antioxidant protection in juvenile olive trees subjected to severe drought. Front Plant Sci 11: 614144.
Batiha GE-S, Alqahtani A, Ojo OA, Shaheen HM, Wasef L, Elzeiny M, Ismail M, Shalaby M, Murata T, Zaragoza-Bastida A, Rivero-Perez N, Beshbishy AM, Kasozi KI, Jeandet P, Hetta HF. 2020. Biological properties, bioactive constituents, and pharmacokinetics of some Capsicum spp. and capsaicinoids. Intl J Mol Sci 21: E5179. DOI: 10.3390/ijms21155179.
Batra NG, Sharma V, Kumari N. 2014. Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. J Plant Interact 9: 712-721. DOI: 10.1080/17429145.2014.905801.
Brito CE, Bown HE, Fuentes JP, Franck N, Perez-Quezada JF. 2014. Mesophyll conductance constrains photosynthesis in three common sclerophyllous species in Central Chile. Rev Chil de Hist Nat 87: 8. DOI: 10.1186/s40693-014-0008-0.
Budiyati I, Rujito AS, Renih H, Susilawati. 2017. Response of red chili varieties under drought stress. Russ J Agric Soci 66: 361-368. DOI: 10.18551/rjoas.2017-06.43.
Chen D, Wang S, Cao B, Cao D, Leng G, Li H, Yin L, Shan L, Deng X. 2016. Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Front Plant Sci 6: 1214. DOI: 10.3389/fpls.2015.01241.
Chen X, Min D, Yasir TA, Hu Y-G. 2012. Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Res 137: 195-201. DOI: 10.1016/j.fcr.2012.09.008.
Chun HC, Lee S, Choi YD, Gong DH, Jung KY. 2021. Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean. J Integr Agric 20: 2639-2651. DOI: 10.1016/S2095-3119(20)63560-2.
Dalal VK, Tripathy BC. 2018. Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage. Sci Rep 8: 5955. DOI: 10.1038/s41598-017-14419-4.
Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J. 2017. Crop production under drought and heat stress: Plant responses and management options. Front Plant Sci 8: 1147. DOI: 10.3389/fpls.2017.01147.
Farooq M, Hussain M, Wahid A, Siddique K. 2012. Drought stress in plants: An overview. In: Aroca R (Eds). Plant Responses to Drought Stress. Springer, New York. DOI: 10.1007/978-3-642-32653-0_1.
Flexas J, Carriquí M, Nadal M. 2018. Gas exchange and hydraulics during drought in crops: Who drives whom? J Exp Bot 69: 3791-3795. DOI: 10.1093/jxb/ery235.
Flexas J, Scoffoni C, Gago J, Sack L. 2013. Leaf mesophyll conductance and leaf hydraulic conductance: An introduction to their measurement and coordination. J Exp Bot 64: 3965-3981. DOI: 10.1093/jxb/ert319.
Gaswanto R, Gunaeni N. 2021. Tolerance response of ten chili genotypes under the limited watering condition. IOP Conf Ser: Earth Environ Sci 807: 032028. DOI: 10.1088/1755-1315/807/3/032028.
HaiJun G, KunMing C. 2012. The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol Plant 34: 1589-1594. DOI: 10.1007/s11738-012-0954-6.
Hatfield JL, Dold C. 2019. Water Use Efficiency: Advances and challenges in a changing climate. Front Plant Sci 10: 103. DOI: 10.3389/fpls.2019.00103.
Jahan E, Amthor J, Farquhar G, Trethowan R, Barbour M. 2014. Variation in mesophyll conductance among Australian wheat genotypes. Funct Plant Biol 41: 568-580. DOI: 10.1071/FP13254.
Khayatnezhad M. 2012. The effect of drought stress on leaf chlorophyll content and stress resistance in maize cultivars (Zea mays). Afr J Microbiol Res 6: 2844-2848. DOI: 10.5897/AJMR11.964.
Li Y, Li H, Li Y, Zhang S. 2017. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. Crop J 5: 231-239. DOI: 10.1016/j.cj.2017.01.001.
Liang G, Liu J, Zhang J, Guo J. 2020. Effects of drought stress on photosynthetic and physiological parameters of tomato. J Am Soc Hortic Sci 145: 12-17. DOI: 10.21273/JASHS04725-19.
Liu Y, Li P, Xu GC, Xiao L, Ren ZP, Li ZB. 2017. Growth, morphological, and physiological responses to drought stress in Bothriochloa ischaemum. Front Plant Sci 8: 230. DOI: 10.3389/fpls.2017.00230.
Liu Y, Zhang X, Tran H, Shan L, Kim J, Childs K, Ervin EH, Frazier T, Zhao B. 2015. Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters. Biotechnol Biofuels 8: 152. DOI: 10.1186/s13068-015-0342-8.
Mardani S, Tabatabaei SH, Pessarakli M, Zareabyaneh H. 2017. Physiological responses of pepper plant (Capsicum annuum L.) to drought stress. J Plant Nutr 40: 1453-1464. DOI: 10.1080/01904167.2016.1269342.
Marini E, Magi G, Mingoia M, Pugnaloni A, Facinelli B. 2015. Antimicrobial and anti-virulence activity of capsaicin against erythromycin-resistant, cell-invasive group a streptococci. Front Microbiol 6: 1281. DOI: 10.3389/fmicb.2015.01281.
Mau Y, Ndiwa A, Oematan S, Markus J. 2019. Drought tolerance indices for selection of drought tolerant, high yielding upland rice genotypes. Aust J Crop Sci 13: 170-178. DOI: 10.21475/ajcs.19.13.01.p1778.
Medrano H, Tomás M, Martorell S, Flexas J, Hernández E, Rosselló J, Pou A, Escalona J-M, Bota J. 2015. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop J 3: 220-228. DOI: 10.1016/j.cj.2015.04.002.
Mehraban A, Tobe A, Gholipouri A, Amiri E, Ghafari A, Rostaii M. 2018. The Effects of drought stress on yield, yield components, and yield stability at different growth stages in bread wheat cultivar (Triticum aestivum L.). Pol J Environ Stud 28: 739-746. DOI: 10.15244/pjoes/85350.
Mohamed IAA, Shalby N, Bai C, Qin M, Agami RA, Jie K, Wang B, Zhou G. 2020. Stomatal and photosynthetic traits are associated with investigating sodium chloride tolerance of Brassica napus L. cultivars. Plants 9: 62. DOI: 10.3390/plants9010062.
Muhammad I, Shalmani A, Ali M, Yang QH, Ahmad H, Li FB. 2021. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front Plant Sci 11: 2310. DOI: 10.3389/fpls.2020.615942.
Mustikarini ED, Lestari T, Santi R, Prayoga GI, Cahya Z. 2022. Short Communication: Evaluation of F6 generation of upland rice promising lines for drought stress tolerance. Biodiversitas 23: 3401-3406. DOI: 10.13057/biodiv/d230712.
Nemeskéri E, Helyes L. 2019. Physiological responses of selected vegetable crop species to water stress. Agronomy 9: 447. DOI: 10.3390/agronomy9080447.
Nio SA, Pirade M, Ludong DPM. 2019. Leaf chlorophyll content in North Sulawesi (Indonesia) local rice cultivars subjected to polyethylene glycol (PEG) 8000-induced water deficit at the vegetative phase. Biodiversitas 20: 2462-2467. DOI: 10.13057/biodiv/d200905.
Okunlola GO, Olatunji OA, Akinwale RO, Tariq A, Adelusi AA. 2017. Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Sci Hortic 224: 198-205. DOI: 10.1016/j.scienta.2017.06.020.
Omolo M, Wong Z-Z, Mergen A, Hastings J, Le N, Reiland H, Case K, Baumler DJ. 2014. Antimicrobial properties of chili peppers. J Infect Dis 2: 145. DOI: 10.4172/2332-0877.1000145.
Perdomo JA, Capó-Bauçà S, Carmo-Silva E, Galmés J. 2017. Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Front Plant Sci 8: 490. DOI: 10.3389/fpls.2017.00490.
Pérez-Gutiérrez A, Garruña R, Vázquez P, Latournerie-Moreno L, Andrade JL, Us-Santamaría R. 2017. Growth, phenology and chlorophyll fluorescence of habanero pepper (Capsicum chinense Jacq.) under water stress conditions. Acta Agron 66: 214-220. DOI: 10.15446/acag.v66n2.55897.
Phimchan P, Techawongstien S, Chanthai S, Bosland P. 2012. Impact of drought stress on the accumulation of capsaicinoids in Capsicum cultivars with different initial capsaicinoid levels. Hortic Sci 47: 1204-1209. DOI: 10.21273/HORTSCI.47.9.1204.
Rajametov SN, Yang EY, Cho MC, Chae SY, Jeong HB, Chae WB. 2021. Heat-tolerant hot pepper exhibits constant photosynthesis via increased transpiration rate, high proline content and fast recovery in heat stress condition. Sci Rep 11: 14328. DOI: 10.1038/s41598-021-93697-5.
Rosmaina, Parjanto P, Sobir S, Yunus A. 2019a. Screening of Capsicum annuum l genotypes for drought tolerance based on drought tolerance indices. Sabrao J Breed Genet 51: 205-224.
Rosmaina, Sobir, Parjanto, Yunus A. 2018. Selection criterias development for chilli pepper under different field water capacity at vegetative stage. Bulg J Agric Sci 24: 80-90.
Rosmaina, Sobir, Parjanto, Yunus A. 2019b. Correlations and path analysis of some characters in chili pepper (Capsicum annuum l.) under normal and drought stress. J Hortic 29: 147-158. DOI: 10.21082/jhort.v29n2.2019.p147-158.
Saeidi M, Abdoli M. 2015. Effect of drought stress during grain filling on yield and its components, gas exchange variables, and some physiological traits of wheat cultivars. J Agric Sci Technol 17: 885-898.
Sánchez-Reinoso AD, Ligarreto-Moreno G, Restrepo-Díaz H. 2020. Evaluation of drought indices to identify tolerant genotypes in common bean bush (Phaseolus vulgaris L.). J Integr Agric 19: 99-107. DOI: 10.1016/S2095-3119(19)62620-1.
Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10: 259. DOI: 10.3390/plants10020259.
Shahrokhi M, Khorasani SK, Ebrahimi A. 2020. Evaluation of drought tolerance indices for screening some of super sweet maize (Zea mays l. var. saccharata) inbred lines. Agrivita 42: 435-448. DOI: 10.17503/agrivita.v42i3.2574.
Shrestha A, Buckley TN, Lockhart EL, Barbour MM. 2018. The response of mesophyll conductance to short- and long-term environmental conditions in chickpea genotypes. AoB Plants 11: ply073. DOI: 10.1093/aobpla/ply073.
Sun F, Chen Q, Chen Q, Jiang M, Gao W, Qu Y. 2021. Screening of key drought tolerance indices for cotton at the flowering and boll setting stage using the dimension reduction method. Front Plant Sci 12: 619926. DOI: 10.3389/fpls.2021.619926.
Tomeo NJ, Rosenthal DM. 2017. Variable mesophyll conductance among soybean cultivars sets a tradeoff between photosynthesis and water use efficiency. Plant Physiol 174: 241-257. DOI: 10.1104/pp.16.01940.
Vanaja M, Maheswari M, Sathish P, Vagheera P, Jyothi Lakshmi N, Vijay Kumar G, Yadav SK, Razzaq A, Singh J, Sarkar B. 2015. Genotypic variability in physiological, biomass and yield response to drought stress in pigeonpea. Physiol Mol Biol Plants 21: 541-549. DOI: 10.1007/s12298-015-0324-0.
Wang R, Peng W, Wu W. 2021. Principal component analysis and comprehensive evaluation on drought tolerance difference of canola cultivars at germination and emergence stages. Chil J Agric Res 81: 557-567. DOI: 10.4067/S0718-58392021000400557.
Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, Gao H, Mei L. 2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open 7: bio035279. DOI: 10.1242/bio.035279.
Widuri LI, Lakitan B, Sakagami J, Yabuta S, Kartika K, Siaga E. 2020. Short-term drought exposure decelerated growth and photosynthetic activities in chili pepper (Capsicum annuum L.). Ann Agric Sci 65: 149-158. DOI: 10.1016/j.aoas.2020.09.002.
Yan C, Song S, Wang W, Wang C, Li H, Wang F, Li S, Sun X. 2020. Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought-tolerant coefficient of yield. BMC Plant Biol 20: 321. DOI: 10.1186/s12870-020-02519-9.
Ying YQ, Song LL, Jacobs DF, Mei L, Liu P, Jin SH, Wu JS. 2015. Physiological response to drought stress in Camptotheca acuminata seedlings from two provenances. Front Plant Sci 6: 361. DOI: 10.3389/fpls.2015.00361.
Yusuf N, Hamed NFI. 2021. Effects of water deficit on the growth and chlorophyll content of Capsicum frutescens. J Sustain Sci Manag 16: 148-158. DOI: 10.46754/jssm.2021.08.013.
Zhan A, Schneider H, Lynch JP. 2015. Reduced lateral root branching density improves drought tolerance in Maize. Plant Physiol 168: 1603-1615. DOI: 10.1104/pp.15.00187.
Zhang P, Bai J, Liu Y, Meng Y, Yang Z, Liu T. 2020. Drought resistance of ten ground cover seedling species during roof greening. PloS One. 15: e0220598. DOI: 10.1371/journal.pone.0220598
Zimmer AR, Leonardi B, Miron D, Schapoval E, Oliveira JR de, Gosmann G. 2012. Antioxidant and anti-inflammatory properties of Capsicum baccatum: From traditional use to scientific approach. J Ethnopharmacol 139: 228-233. DOI: 10.1016/j.jep.2011.11.005.
Zlatev Z, Lidon F. 2012. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric 24: 57-72. DOI: 10.9755/ejfa.v24i1.10599.