Extracellular protease from Bacillus subtilis B315 with antagonistic activity against bacterial wilt pathogen (Ralstonia solanacearum) of chili




Abstract. Prihatiningsih N, Asnani A, Djatmiko HA. 2021. Extracellular protease from Bacillus subtilis B315 with antagonistic activity against bacterial wilt pathogen (Ralstonia solanacearum) of chili.  Biodiversitas 22: 1291-1295. Antagonistic bacteria isolated from a healthy potato are potential biocontrol agents against a number of bacterial pathogens. The capability of antagonistic bacteria to produce extracellular protease could be considered as an indicator of their antagonistic capacity. The objective of this research was to study the optimum activity of protease produced by Bacillus subtilis B315 to control Ralstonia solanacearum causing wilt of chili. In this research were optimum incubation time, pH and crude extract protease concentration of B. subtilis B315 examined for maximum production of extracellular protease. The results showed that B. subtilis B315 was capable of producing protease at optimum incubation time of 30 min, pH 9, and crude extract protease concentration 0.50% with an activity of 1.3185 U/mL. Protease-producing capability of B. subtilis B315 was shown by the formation of a clear zone around the colony of B. subtilis B315 grown on skim-milk agar medium. B. subtilis B315 was capable of inhibiting the growth of R. solanacearum in vitro as indicated by 32 mm clear zone. Furthermore, in chili application of B subtilis showed that this bacteria was capable of controlling chili bacterial wilt caused by R. solanacearum with effectiveness of 60.89%. The prospective of B. subtilis B315 could be formulated as biopesticide.


Almas S, Hammed A, Shelly D & Mohan P. 2009. Purification ang Characterization of Novel Protease from Bacillus Strain SAL 1. African Journal of Biothechnology 8(15): 3603-3609
Abu-Mejdad NMJ, Aaiz FL, Jassim OT. 2013. Antifungal activity of ethyl acetate extract of four species Bacillus isolated from soil. Journal of Amecican Science 9(10): 172-176
Alnahdi, HS. 2012. Isolation and Screening of extracellular proteases produced by new isolated Bacillus sp. Journal f Applied Pharmaceutical Science 2(9): 071-074
Aslam MN, Mukhtar T, Ashfaq M, Asad MJ, Hussain MA.2015. Incidence and prevalence of bacterial wilt of chili in Punjab, Pakistan. Mycopath 13(1):37-41
Bhowmik S, Sumaiya Islam, Monzur Morshed Ahmed, M. Belal Hossain and Md. Abul Hossain, 2015. Protease Producing Bacteria and Activity in Gut of Tiger Shrimp (Penaeus monodon). J. Fish. Aquat. Sci., 10 (6): 489-500. DOI: 10.3923/jfas.2015.489.500
Denny TP and Hayward AC. 2001. Gram-negative Bacteria, Ralstonia. Pp:151-174. In, N.W. Schaad, J.B. Jones and W. Chun (Eds.), Laboratory Guide for Identification of Plant Pathogenic Bacteria. APS Press. The American Phytopathologycal Society. St Paul. Minnesota.
Ghosh S, Sinha A, & Sahu C. 2007. Isolation of putative probionts from the intestines of Indian mayorcarps. Isr. J. Aquacult.-Bamid. 59(3): 127–132.
Jadhav AA, Ismail KS, Harale MA, Gadre SV and Williamson MT. 2014. Study of Protease Enzyme from Bacillus Species and its Application as a Contact Lens Cleanser. British Biomedical Bulletin 2(2):293-302
Jha DK and Bhattacharyya PN. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327–1350 DOI 10.1007/s11274-011-0979-9
Joshi PP & Ghike PB. 2019. Study of Protease Producing Bacteria and their Enzymatic Activity at Different Parameters. International Journal of Engineering and Technology (IRJET) 06(06): 2239-22
Lestari P, Prihatiningsih N, Djatmiko HA. 2017. Partial biochemical characterization of crude extracellular chitinase enzym from Bacillus subtilis B298. IOP Conf. Ser. Mater Sci Eng 172 (2017)012041. DOI: 10.1088/1757-899X/172/1/012041
Majumdar S & Chakraborty U. 2017. Optimization Of Protease Production From Plant GrowthPromoting Bacillus amyloliquefaciens Showing Antagonistic Activity Against Phytopathogens. Int. J. Pharm. Bio. Sci. 8(2): 635-642
Mitrofanova O, Mardanova A, Evtugyn V, Bogomolnaya L, and Sharipova M. 2017. Effects of Bacillus Serine Proteases on the Bacterial Biofilms. Hindawi BioMed Research International Vol. 2017, 10 pages https://doi.org/10.1155/2017/8525912
Morikawa M. 2006. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J. Biosci. Boieng. 101(1): 1-8
Pant G, Prakash A, Pavani JVP, Bera S, Deviram GVNS, Kumar A, Mitali Panchpuri, Prasuna RG. 2015. Production, optimization and partial purification of protease from Bacillus subtilis. Journal of Taibah University for Science 9: 50–55
Pawaskar JR, Kadam JJ, Navathe S, Kadam JS. 2014. Response of Chilli Varieties and Genotypes to Bacterial Wilt Caused by Ralstonia solanacearum and its Management. Indian Journal of Science 11 (29): 66-69
Prihatiningsih, N. Soedarmono, T. Arwiyanto, B. Hadisutrisno. 2006. Pengendalian hayati penyakit layu bakteri kentang dengan Bacillus sp.: 1. Eksplorasi dan pengujian in vitro dan di rumah plastic. Agrosains. 8 (1): 27-31
Prihatiningsih N, 2013. Aktivitas Antibiosis Bacillus sp. B315 sebagai Agens Pengendali Hayati Ralstonia solanacearum pada Kentang. Disertasi. Program Pascasarjana Fakultas Pertanian Universitas Gadjah Mada. Yogyakarta.
Prihatiningsih N and Djatmiko HA. 2016. Enzim Amilase sebagai Komponen Antagonis Bacillus subtilis B315 terhadap Ralstonia solanacearum Kentang. Jurnal Hama dan Penyakit Tumbuhan Tropika 16(1): 10-16
Prihatiningsih N, Djatmiko HA, Lestari P. 2016. Karakter Fisiologis Bacillus subtilis Asal Rizosfer Kentang sebagai Pemacu Pertumbuhan Tanaman Solanaceae. Laporan Penelitian Fundamental. Fakultas Pertanian Unsoed. Purwokerto.
Prihatiningsih N, Djatmiko HA, Erminawati. 2019. Bio-management of anthracnose disease in chilli with microencapsulates containing Bacillus subtilis B298. IOP Conf. Series: Earth and Environmental Science 250 (2019) 012041. doi:10.1088/1755-1315/250/1/012041
Queiroga AC, Pintado ME, Malcata FX.2013. Medium factors affecting extracellular protease activity by Bacillus sp. HTS 102—A novel wild strain isolated from Portuguese merino wool. Natural Science.5 (6A): 44-53 doi:10.4236/ns.2013.56A007
Radhakrishnan R, Hashem A, Abd_Allah EF. 2017. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Frontiers in Physiology Vol 8 article 667
Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN. 2017. Bacillus spp. a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLOS One 12(11): e0187412. https://doi.org/10.1371/journal.pone.0187412.
Saha D, Purkayastha GD, Ghosh A, Isna M, Saha A. 2012. Isolation and Characterization of two new Bacillus subtilis strains from the rhizosphere of eggplant as potential biocontrol agents. Journal of Plant Pathology 94(1): 109-118
Shumi,WHT and Anwar MN. 2004. Proteolytic Activity of a Bacterial Isolate Bacillus fastidiosus. JBS 4: 370-374
Singh D, Sinha S, Yadav DK, Sharma JP, Srivastava DK, Lal HC, Mondal KK, Jaiswal RK. 2010. Characterization of biovar/ races of Ralstonia solanacearum,the incitant of bacterial wilt in solanaceous crops. Indian Phytopath. 63 (3) : 261-265
Tebyanian H, Mirhosseiny SH, Bakhtiari A, Karami A, Dadseresht S, Otroshi B. 2018. Effect of Physical and Chemical Factors in Production of Alkaline Protease Enzyme by Bacillus Strains. International Letters of Natural Sciences 71:10-16. doi:10.18052/www.scipress.com/ILNS.71.10
Vanitha SC, Niranjana SR, Mortensen CN, Umesha S. 2009. Bacterial wilt of tomato in Karnataka and its management by Pseudomonas fluorescens. Biocontrol 54(5): 685-695
Vijayaraghavan P and Vincent SGP.2013. A simple method for the detection of protease activity on agar plates using bromocresolgreen dye. J Biochem Tech 4(3): 628-630

Most read articles by the same author(s)