Potential of Bacillus subtilis potato isolate as biocontrol agent of Xanthomonas oryzae pv. oryzae and candidate for nanosuspension formula

##plugins.themes.bootstrap3.article.main##

HERU ADI DJATMIKO
DHADHANG WAHYU KURNIAWAN
NUR PRIHATININGSIH

Abstract

Abstract. Djatmiko HA, Kurniawan DW, Prihatiningsih N. 2022. Potential of Bacillus subtilis potato isolate as biocontrol agent of Xanthomonas oryzae pv. oryzae and candidate for nanosuspension formula. Biodiversitas 23: 3313-3317. Bacillus subtilis potato isolate was able to be an antagonist of plant pathogens. The aims of this study were (i) to examine the potential of potato isolate B. subtilis as a control for Xanthomonas oryzae pv. oryzae (Xoo) as a pathogen rice bacterial leaf blight, (ii) determine the inhibition mechanism of their isolates, (iii) evaluate the best B. subtilis to make nanosuspension formula. The method was carried out in a completely randomized design with 5 treatments of B. subtilis potato isolates B46, B209, B211, B298, and B315, repeated 4 times. Xoo and five B. subtilis were grown in nutrient broth medium in a shaker. Xoo and B. subtilis were grown in yeast peptone glucose agar medium by the diffusion method. Xoo was inoculated on medium, and then a 5 mm diameter filter paper immersed with B. subtilis suspension was placed on the medium. The best B. subtilis as a controller was used to formulate into nanosuspension. The variables were zone of inhibition, inhibition mechanism and antibiosis index. The results showed that only three B. subtilis were able to inhibit the growth of Xoo, namely B211, B298 and B315 isolates. The highest (10 mm) inhibition zone was recorded by B. subtilis B315 isolate. The mechanism of inhibition of the three isolates of B. subtilis against Xoo was bacteriostatic. The antibiosis index of B. subtilis B315 against Xoo was 1 (strong). The selected B. subtilis B315 was developed as a nanosuspension formula with inhibition zone of 2.1 mm and antibiosis index was 0.42.

##plugins.themes.bootstrap3.article.details##

References
Alghuthaymi MA, Almoammanarb H, Raic M, Said-Galievd E, Abd-Elsalame KA. 2015. Myconanoparticles: Synthesis and their role in phytopathogens management, Biotechnology and Biotechnological Equipment. Taylor & Francis, 29(2): 221–236. doi: 10.1080/13102818.2015.1008194.
Azizah, N. 2017. Uji antagonis Corynebacterium sp, Bacillus amyloliquefaciens, Trichoderma sp, dan Gliocladium sp, terhadap bakteri patogen Burkholderia glumae pada tanaman padi secara In-Vitro. Skripsi. Fakultas Pertanian Universitas Hasanudin, Makassar.
Balouiri, M., Sadiki, M. and Ibnsouda, S. K. 2016. Methods for in vitro evaluating antimicrobial activity?: A review, Journal of Pharmaceutical Analysis. Elsevier, 6(2): 71–79. doi: 10.1016/j.jpha.2015.11.005.
Chun, W. and Vidaver, A. K. 2001. Gram-Positive Bacteria: Bacillus’, in Schaad, N. W., Jones, J. B., and Chun, W. (eds) Plant Pathogenic Bacteria 3 nd. pp: 250-260 APS Press, St. Paul Minnesota.
Gordon RE, Haynes WC, Pang CH. 1973. The Genus Bacillus. United States Departement of Agriculture, Washington DC.
Goto M. 1992 Fundamental of Bacterial Plant Pathology. Academic Press New York.
Halimahtussadiyah R, Natsir M, Kurniawati D, Puspita S, Utamy. 2017. Isolation And Identification Of Chitinolytic Bacteria Of Pohara River Of South East Sulawesi And The Optimization Production Of Chitinase Enzyme, AIP Conf. Proc. 1823, 020062-1–020062-7; pp. 1–7. doi: 10.1063/1.4978135.
Kala A, Soosairaj S, Mathiyazhagan S, Raja P. 2015. Isolation and Identification of Xanthomonas oryzae pv . oryzae the causal agent of rice bacterial leaf blight and its activities against of six medicinal plants, Asian J. Plant Sci. Res., , 5(6):80-83.
Lade BD, Gogle DP, Lade DB, Moon GM, Nandeshwari SB, Kumbhare SD. 2019 Nanobiopesticide formulations: Application strategies today and future perspectives’, Nano-Biopesticides Today and Future Perspectives, (Chap.7), pp. 179–206. doi: 10.1016/B978-0-12-815829-6.00007-3.
Lestari P, Prihatiningsih N, Djatmiko HA. 2017 Partial biochemical characterization of crude extract extracellular chitinase enzyme from Bacillus subtilis B 298, IOP Conf. Series: materials Science and Engineering, 012041. doi: 10.1088/1757-899X/172/1/1/012041.
Lia R. 2018. Pathotype profile of Xanthomonas oryzae pv . oryzae isolates from North Sumatera. IOP Conf. Series: Earth and Environmental Science 122 (2018) 012142 doi :10.1088/1755-1315/122/1/012142
Marcic SM, Todorovic V, Stanojevic O, Beric T, Stankovic S, Todorovic B, Potocnic I. 2018 Antagonistic potential of Bacillus spp. isolates against bacterial pathogens of tomato and fungal pathogen of pepper, Pesticide i fitomedicina, 33(1): 9–18. doi: 10.2298/pif1801009m.
Naqvi SAH, Perveen R, Umer UD, Malik O, Rehman A, Wazeer S, Majid T. 2014 Determination of antibacterial activity of various broad spectrum antibiotics against Xanthomonas oryzae pv . oryzae , a cause of bacterial leaf blight of rice’, Inter. J.of Microbiol and Mycol. 2(3): 12–19.
Prihatiningsih N. 2013. Aktivitas antibiosis Bacillus sp. B315 sebagai agens pengendali hayati Ralstonia solanacearum pada kentang. Disertasi. Universitas Gadjah Mada Yogyakarta.
Prihatiningsih N. and Djatmiko HA. 2016. Enzim amilase sebagai komponen antagonis Bacillus subtilis B315 terhadap Ralstonia solanacearum kentang. J.HPT Tropika 16(1): 10–16.
Prihatiningsih N, Djatmiko HA,Lestari P. 2017. Aktivitas siderofor Bacillus subtilis sebagai pemacu pertumbuhan dan pengendali patogen tanaman terung. J.HPT Tropika 17(2): 170–178.
Prihatiningsih N, Djatmiko HA, Lestari P. 2020b. Screening of competent rice root endophytic bacteria to promote rice growth and bacterial leaf blight disease control.. J.HPT Tropika 20(1):78–84.
Prihatiningsih N, Arwiyanto T, Hadisutrisno B, Widada J. 2020a. Characterization of Bacillus spp.. from the rhizosphere of potato Granola varietiy as an antibacterial against Ralstonia solanacearum. Biodiversitas 21(9): 4199–4204. doi: 10.13057/biodiv/d210934.
Prihatiningsih N, Asnani A, Djatmiko HA. 2021 Extracellular protease from Bacillus subtilis B315 with antagonistic activity against bacterial wilt pathogen (Ralstonia solanacearum) of chili. Biodiversitas 22(3): 1291–1295. doi: 10.13057/biodiv/d220327.
Shanti ML, Shenoy VV, Devi GL, Kumar VM, Premalatha P, Kumar GN, Shaahidhar HE, Zehr UB, Barwale FWH. 2010. Marker-assisted breeding for resistance to bacterial leaf blight in popular cultivar and parental lines of hybrid rice, J.of Plant Pathol. 92 (2):495-501.
Singh D, Yaday DK, Chaudhary G, Rana VS, Sharm RK. 2016. Potential of Bacillus amyloliquefaciens for Biocontrol of Bacterial Wilt of Tomato Incited by Ralstonia solanacearum, J Plant Pathol Microbiol 7(1): 1–6. doi: 10.4172/2157-7471.1000327.
Swamy P, Panchbha AN, Dodiya P, Naik V, Panchbhai SD, Zehr UB, Azhakanandam K, Char BR. 2006. Evaluation of bacterial blight resistance in rice lines carrying multiple resistance genes and Xa21 transgenic lines, Current Science 90 (6): 818-824
Worrall EA, Hamid A, Mody KT, Mitter N, Pappu HR. 2018. Nanotechnology for plant disease management. Agronomy, 8(12): 1–24. doi: 10.3390/agronomy8120285.
Yanti Y., Hamid H, Habazar T. 2020. The ability of indigenous Bacillus spp . consortia to control the anthracnose disease (Colletrotricum capsici) and increase the growth of chili plants. Biodiversitas 21(1): 179–186. doi: 10.13057/biodiv/d210123.

Most read articles by the same author(s)