The fibrinolytic potential of Bacillus amyloliquefaciens isolates from salt-fermented shrimp paste terasi

##plugins.themes.bootstrap3.article.main##

REINHARD PINONTOAN
SANNIA CITY
ANASTHASIA NATHANIA WIDJAJA
JONATHAN SUCIONO PURNOMO
DIKSON

Abstract

Abstract. Pinontoan R, City S, Widjaja AN, Purnomo JS, Dikson. 2024. The fibrinolytic potential of Bacillus amyloliquefaciens isolates from salt-fermented shrimp paste terasi. Biodiversitas 25: 3193-3199. Thrombosis, a major pathology in Cardiovascular Diseases (CVDs), significantly contributes to global mortality. Although medicinal prevention and management of recurrent thromboses do exist, alternative means using natural sources are actively sought because of their lower costs, better compatibility, and lower risks of side effects. Due to their beneficial microorganisms, fermented foods offer a potential thrombolytic source for managing CVDs. In this study, we aimed to isolate and identify bacteria with thrombolytic activity from fermented shrimp paste terasi. Potential protease-producing bacteria from terasi were determined via cell and colony morphology, biochemical properties, and 16S rRNA sequence analyses. Subsequently, the thrombolytic and fibrinolytic activities of the bacteria were assessed by performing whole-blood clot tests and fibrin degradation assays; two protease-producing bacteria, designated as TJU5 and TMAD4 isolates were identified as Bacillus amyloliquefaciens. The isolates demonstrated thrombolytic activity by significantly reducing whole-blood clot mass after 2 h of incubation. The thrombolytic mechanism involves fibrinolysis indicated by the rapid degradation of A?, B?, and ? fibrin chains observed within 1 min of incubation. These findings highlight the beneficial bacteria from fermented shrimp paste terasi, identified as B. amyloliquefaciens TJU5 and TMAD4, with high thrombolytic and fibrinolytic activities, underscoring their potential role in bolstering cardiovascular health.

##plugins.themes.bootstrap3.article.details##

References
Afifah DN, Sulchan M, Syah D, Yanti, Suhartono MT. 2015. The use of red oncom powder as potential production media for fibrinogenolytic protease derived from Bacillus licheniformis RO3. Procedia Food Sci 3: 453-464. DOI: 10.1016/j.profoo.2015.01.050.
Afifah DN, Sulchan M, Syah D, Yanti, Suhartono MT, Kim JH. 2014. Purification and characterization of a fibrinolytic enzyme from Bacillus pumilus 2.G isolated from gembus, an Indonesian fermented food. Prev Nutr Food Sci 19: 213-219. DOI: 10.3746/pnf.2014.19.3.213.
Agrebi R, Haddar A, Hajji M, Frikha F, Manni L, Jellouli K, Nasri M. 2009. Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: characterization and statistical media optimization. Can J Microbiol 55: 1049-1061. DOI: 10.1139/W09-057.
Chan SXY, Fitri N, Asni NSM, Sayuti NH, Azlan UK, Qadi WSM, Dawoud EAD, Kamal N, Sarian MN, Lazaldin MAM et al. 2023. A comprehensive review with future insights on the processing and safety of fermented fish and the associated changes. Foods 12: 558. DOI: 10.3390/foods12030558.
Cheng Y, Han J, Song M, ZHang S, Cao Q. 2023. Serine peptidase Vpr forms enzymatically active fibrils outside Bacillus bacteria revealed by cryo-EM. Nat Commun 14: 7503. DOI: 10.1038/s41467-023-43359-z.
Dwivedi S, Singh V, Sharma K, Sliti A, Baunthiyal M, Shin J. 2023. Significance of soy-based fermented food and their bioactive compounds against obesity, diabetes, and cardiovascular diseases. Plant Foods Hum Nutr. DOI: 10.1007/s11130-023-01130-1.
Estruch R, Lamuela-Raventós. 2023. Cardiovascular benefits of fermented foods and beverages: still up for debate. Nat Rev Cardiol 20: 789-790. DOI: 10.1038/s41569-023-00938-3.
Gall E, Lafont A, Varenne O, Dumas F, Cariou A, Picard F. 2021. Balancing thrombosis and bleeding after out-of-hospital cardiac arrest related to acute coronary syndrome: A literature review. Arch Cardiovasc Dis 114: 667-679. DOI: 10.1016/j.acvd.2021.07.002.
Kho CW, Park SG, Cho S, Lee DH, Myung PK, Parks BC. 2005. Confirmation of Vpr as a fibrinolytic enzyme present in extracellular protein of Bacillus subtilis. Protein Expr Purif 39: 1-7. DOI:10.1016/j.pep.2004.08.008.
Harwood CR, Kikuchi Y. 2022. The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol Rev 46: fuab046. DOI:10.1093/femsre/fuab046.
Helmi H, Astuti DI, Putri SP, Sato A, Laviña WA, Fukusaki E, Aditiawati P. 2022. Dynamic changes in the bacterial community and metabolic profile during fermentation of low-salt shrimp paste. Metabolites 12: 118. DOI: 10.3390/metabo12020118.
Hu Y, Yu D, Wang Z, Hou J, Tyagi R, Liang Y, Hu Y. 2019. Purification and characterization of a novel, highly potent fibrinolytic enzyme from Bacillus subtilis DC27 screened from Douchi, a traditional Chinese fermented soybean food. Sci Rep 9: 9235. DOI: 10.1038/s41598-019-45686-y.
Hyeon-Deok J, Lee HA, Jeong S-J, Kim JH. 2011. Purification and characterization of a major fibrinolytic enzyme from Bacillus amyloliquefaciens MJ5-41 isolated from Meju. J Microbiol Biotechnol 21: 1166-1173. DOI: 10.4014/jmb.1106.06008.
Kim DH, Subramanian D, Park SH, Jang YH, Heo MS. 2017. Assessment and potential application of the probiotic strain, Bacillus amyloliquefaciens JFP2, isolated from fermented seafood-jeotgal in flounder Paralichthys olivaceus juveniles. Isr J Aquac 69: 1-12. DOI: 10.46989/001c.20894.
Lazar Jr. I, Lazar Sr. I. 2023. GelAnalyzer 23.1.1. Available at: http://www.gelanalyzer.com/ (Accessed 2023-12-24).
Lisman T, Hernandez-Gea V, Magnusson M, Roberts L, Stanworth S, Thachil J, Tripodi A. 2021. The concept of rebalanced hemostasis in patients with liver disease: Communication from the ISTH SSC working group on hemostatic management of patients with liver disease. J Thromb Haemost 19: 1116-1122. DOI: 10.1111/jth.15239.
Llario F, Romano LA, Rodilla M, Sebastiá-Frasquet MT, Poersch LH. 2018. Application of Bacillus amyloliquefaciens as probiotic for Litopenaeus vannamei (Boone, 1931) cultivated in a biofloc system. Iranian J Fisheries Sci 19: 904-920. DOI:10.22092/ijfs.2018.117852.
Lucy J, Raharjo PF, Elvina, Florencia L, Susanti AI, Pinontoan R. 2019. Clot lysis activity of Bacillus subtilis G8 isolated from Japanese fermented Natto soybeans. Appl Food Biotechnol 6: 101-109. DOI: 10.22037/afb.v6i2.22479.
McDonagh J, Messel H, McDonagh Jr. RP, Murano G, Blombäck B. 1972. Molecular weight analysis of fibrinogen and fibrin chains by an improved sodium dodecyl sulfate gel electrophoresis method. Biochim Biophys Acta. 257: 135-142. DOI: 10.1016/0005-2795(72)90262-0.
Meng Y, Yao Z, Le HG, Lee SJ, Jeon HS, Yoo JY, Kim JH. 2021. Characterization of a salt?resistant fibrinolytic protease of Bacillus licheniformis HJ4 isolated from Hwangseokae jeotgal, a traditional Korean fermented seafood. Folia Microbiol 66: 787-795. DOI: 10.1007/s12223-021-00878-w.
Ning YC, Yang HN, Li N, Liu Y, Wang CY, Zhang X, Liu LL, Weng PF, Wu ZF. 2021. Cloning, expression and characterization of a novel fibrinolytic serine metalloproteinase from Bacillus velezensis SW5. Appl Biochem Microbiol 57: 48-56. DOI: 10.3390/microorganisms10050843.
Ouertani A, Chaabouni I, Mosbah A, Long J, Barakat M, Mansuelle P, Mghirbi O, Najjari A, Ouzari H-I, Masmoudi AS et al. 2018. Two new secreted proteases generate a casein-derived antimicrobial peptide in Bacillus cereus food born isolate leading to bacterial competition in milk. Front Microbiol 9: 1148. DOI: 10.3389/fmicb.2018.01148.
Pinontoan R, Elvina, Sanjaya A, Jo J. 2021. Fibrinolytic characteristics of Bacillus subtilis G8 isolated from natto. Biosci Microbiota Food Health 40: 144-149. DOI: 10.12938/bmfh.2020-071.
Pinontoan R, Leke PAI, Lesmana JA, Purnomo JS, Dikson, Samantha A. 2024. In vitro assessment of thrombolytic potential of red and white ginger (Zingiber officinale). Funct Food Health Dis 14: 62-73. DOI:10.31989/ffhd.v14i1.1245.
Prihanto AA, Muyasyaroh H. 2021. The Indonesian fermented food product terasi: history and potential bioactivities. Sys Rev Pharm 12: 378-384. DOI:10.31838/SRP.2021.2.52.
Priskila C, Vidian V, Sanjaya A, Sugata M, Pinontoan R. 2022. Thrombolytic potential in bacteria isolated from fermented durian tempoyak. Biodiversitas 23: 5731-5737. DOI: 10.13057/biodiv/d231124.
Rajaselvam J, Benit N, Alotaibi SS, Rathi MA, Srigopalram S, Biji GD, Ponnuswamy V. 2021. In vitro fibrinolytic activity of an enzyme purified from Bacillus amyloliquefaciens strain KJ10 isolated from soybean paste. Saudi J Biol Sci 28: 4117-4123. DOI: 10.1016/j.sjbs.2021.04.061.
Risman RA, Kirby NC, Bannish BE, Hudson NE, Tutwiler V. 2023. Fibrinolysis: an illustrated review. Res Pract Thromb Haemost 7: 100081. DOI:10.1016/j.rpth.2023.100081.
Salunke AS, Nile SH, Kharat AS. 2022. A comparative study on fibrinolytic enzymes extracted from six Bacillus spp. isolated from fruit-vegetable waste biomass. Food Biosci 50: 102149. DOI: 10.1016/j.fbio.2022.102149.
Slem B, Gezgin Y, Eltem R. 2016. Screening and characterization of thermostable fibrinolytic enzyme from Bacillus amyloliquefaciens EGE-B-2d.1. Turk J Biochem 41: 167-176. DOI:10.1515/tjb-2016-0027.
Syahbanu F, Kezia E, Puera N, Giriwono PE, Tjandrawinata RR, Suhartono MT. 2020. Fibrinolytic bacteria of Indonesian fermented soybean: preliminary study on enzyme activity and protein profile. Food Sci Technol, Campinas 40:458-465. DOI: 10.1590/fst.23919.
Surono IS. 2016. Ethnic fermented foods and beverages of Indonesia. In Fermented Foods and Alcoholic Beverages of Asia, Tamang J (eds), Springer, New Delhi, pp. 341–382. DOI: 10.1007/978-81-322-2800-4_14.
Tang L, Liu C, Rosenberger P. 2023. Platelet formation and activation are influenced by neuronal guidance proteins. Front Immunol 14:1206906. DOI: 10.3389/fimmu.2023.1206906.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 38: 3022-3027. DOI: 10.1093/molbev/msab120.
Thu NTA, Khue NTM, Huy ND, Tien NQD, Loc NH. 2020. Characterizations and fibrinolytic activity of serine protease from Bacillus subtilis C10. Curr Pharm Biotechnol 21: 110-116. DOI: 10.2174/1389201020666191002145415.
Tsujimoto T, Kaijo H. 2019. Thrombotic/thrombolytic balance as a cardiac treatment determinant in patients with diabetes mellitus and coronary artery disease. J Am Heart Assoc 8: e011207. DOI: 10.1161/JAHA.118.011207.
Vasilyeva A, Yurina L, Shchegolikhin A, Indeykina M, Bugrova A, Kononikhin A, Nikolaev E, Rosenfeld M. 2020. The structure of blood coagulation factor XIII is adapted to oxidation. Biomolecules 10: 914. DOI: 10.3390/biom10060914.
Vilar R, Fish RJ, Casini A, Neerman-Arbez M. 2020. Fibrin(ogen) in human disease: both friend and foe. Haematol 105: 284-296. DOI: 10.3324/haematol.2019.236901.
Wang P, Peng C, Xie X, Deng X, Weng M. 2023. Research progress on the fibrinolytic enzymes produced from traditional fermented foods. Food Sci Nutr 11: 5675-5688. DOI: 10.1002/fsn3.3601.
Weisel JW, Litvinov RI. 2017. Fibrin formation, structure and properties. Subcell Biochem 82: 405–456. DOI: 10.1007/978-3-319-49674-0_13
Wu J, Lan G, He N, He L, Li C, Wang X, Zeng X. 2023 Purification of fibrinolytic enzyme from Bacillus amyloliquefaciens GUTU06 and properties of the enzyme. Food Chem: X 20: DOI: 10.1016/j.fochx.2023.100896.
Yang H, Yang L, Li X, Li H, Tu Z, Wang X. 2020. Genome sequencing, purification, and biochemical characterization of a strongly fibrinolytic enzyme from Bacillus amyloliquefaciens Jxnuwx-1 isolated from Chinese traditional douchi. J Gen Appl Microbiol 66: 153-162. DOI: 10.2323/jgam.2019.04.005.
Yao Z, Liu X, Shim JM, Lee KW, Kim H-J, Kim JH. 2017. Properties of a fibrinolytic enzyme secreted by Bacillus amyloliquefaciens RSB34, isolated from doenjang. J Microbiol Biotechnol 22: 9-18. DOI: 10.4014/jmb.1608.08034.
Yao Z, Kim JA, Kim JH. 2018. Gene cloning, expression, and properties of a fibrinolytic enzyme secreted by Bacillus pumilus BS15 isolated from gul (oyster) jeotgal. Biotechnol Bioprocess Eng 23: 293-301. DOI: 10.1007/s12257-018-0029-7.
Yao Z, Kim JA, Kim JH. 2018. Properties of a fibrinolytic enzyme secreted by Bacillus subtilis JS2 isolated from saeu (small shrimp) jeotgal. Food Sci Biotechnol 27: 765-772. DOI: 10.1007/s10068-017-0299-4.
Yao Z, Kim JA, Kim JH. 2019. Characterization of a fibrinolytic enzyme secreted by Bacillus velezensis BS2 isolated from sea squirt jeotgal. Food Microbiol Biotechnol 29: 347-356. DOI: 10.4014/jmb.1810.10053.
Yogesh D, Halami PM. 2015. Evidence that multiple proteases of Bacillus subtilis can degrade fibrin and fibrinogen. Intl Food Res J 22: 1662-1667.
Yuan L, Liangqi C, Xiyu T, Jinyao L. 2022. Biotechnology, bioengineering and applications of Bacillus nattokinase. Biomol 12: 980. DOI: 10.3390/biom12070980.
Zafrida S, Ethica SN, Ernanto AR, Wijanarka. 2022. Optimization of crude protease production from Bacillus thuringiensis HSFI-12 and thrombolytic activity its enzyme dialysate. Trends Sci 19: 1952. DOI:10.48048/tis.2022.1952.
Zalila-Kolsi I, Ben-Mahmoud A, Al-Barazie R. 2023. Bacillus amyloliquefaciens: harnessing its potential for industrial, medical, and agricultural applications-a comprehensive review. Microorganisms 11:2215. DOI: 10.3390/microorganisms11092215.
Zhou Y, Chen H, Yu B, Chen G, Liang Z. 2022a. Purification and characterization of a fibrinolytic enzyme from marine Bacillus velezensis Z01 and assessment of its therapeutic efficacy in vivo. Microorganisms 10: 843. DOI: 10.3390/microorganisms10050843.
Zhou P, Chen W, Zhu Z, Zhou K, Luo S, Hu S, Xia L, Ding X. 2022b. Comparative study of Bacillus amyloliquefaciens x030 on the intestinal flora and antibacterial activity against Aeromonas of grass carp. Front Cell Infect Microbiol 12: 815436. DOI: 10.3390/microorganisms10050843.
Zhou X, Liu L, Zeng X. 2021. Research progress on the utilisation of embedding technology and suitable delivery systems for improving the bioavailability of nattokinase: A review. Food Struct 30: 100219. DOI: 10.1016/j.foostr.2021.100219.

Most read articles by the same author(s)

1 2 > >>