The potential of copper-resistant bacteria Acinetobacter sp. strain CN5 in decolorizing dyes

##plugins.themes.bootstrap3.article.main##

WAHYU IRAWATI
REINHARD PINONTOAN
BELLEN MOURETTA
TRIWIBOWO YUWONO

Abstract

Abstract. Irawati W, Pinontoan R, Mouretta B, Yuwono T. 2021. The potential of copper-resistant bacteria Acinetobacter sp. strain CN5 in decolorizing dyes. Biodiversitas 23: 680-686. Bacteria with multi-resistance to copper and dyes may be employed in bioremediation of copper and dye waste more effectively than physical or chemical remediation. This study aims at determining the effect of the addition of various textile dyes and copper on the growth of Acinetobacter sp. CN5 and its ability to decolorize dyes. The dye resistance test was carried out by inoculating bacterial isolates into Luria Bertani media containing 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 ppm dyes. The twelve dyes used in the test were methylene blue, malachite green, congo red, mordant orange, reactive black, direct yellow, basic fuchsine, reactive orange, dispersion orange, remazol red, wantex yellow, and wantex red. The decolorization activity was analyzed by spectrophotometry at a 300-900 nm wavelength. The study results demonstrated that bacteria thrived in media containing 50 ppm of all dyes, except malachite green dye. Acinetobacter sp. CN5 was found to be resistant to up to 500 ppm methylene blue, basic fuchsine, and wantex red and resistant to congo red at 450 ppm. Acinetobacter sp. CN5 was also able to decolorize methylene blue, congo red, basic fuchsine, and red wantex by 57.64%, 53.17%, 91.37%, and 67.50%, respectively. The addition of 5 mM CuSO4 to the medium increased the ability of Acinetobacter sp. CN5 to decolorize the congo red from 57.64% to 82.58%.

##plugins.themes.bootstrap3.article.details##

References
Abo-State MAM, Saleh YE, Hazaa HA. 2017. Decolorization of Congo Red dye by bacterial isolates. J Ecol Health Env 5 (2): 41-48.
Abou-El-Souod GW, El-Sheekh MA. 2016. Biodegradation of Basic Fuchsin and Methyl Red by The Blue Green Algae Hydrocoleum oligotrichum and Oscillatoria limnetica. Environ Eng Manag J, 15 (2): 279-296.
Al-Fawwaz AT, Abdullah M. 2016. Decolorization of Methylene Blue and Malachite Green by Immobilized Desmodesmus sp. Isolated from North Jordan. Int J Environ Sci 7(2): 95-99.
Alquethamy S, Khorvash M, Pederick V, Whittall J, Paton J, Paulsen I, Hassan K, McDevitt C, Eijkelkamp B. 2019. The Role of the CopA Copper Efflux System in Acinetobacter baumannii Virulence. Int J Mol Sci 20 (3).
Alam MZ, Mansor MF, Jalal KCA. 2008. Optimization of decolorization of methylene blue by lignin peroxidase enzyme produced from sewage sludge with Phanerocheate chrysosporium. J Hazard Mater 162 (2-3): 708-715.
An S-Y, Min S-K, Cha I-H, Choi Y-L, Cho Y-S, Kim C-H, Lee Y-C. 2002. Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol Lett 24 (12).
Asses N, Ayed L, Hkiri N, Hamdi M. 2018. Congo Red Decolorization and Detoxification by Aspergillus niger: Removal Mechanisms and Dye Degradation Pathway. BioMed Res Int 2018, 1-9.
Azizah YDN. 2018. Biodekolorisasi Pewarna Metilen Biru oleh Bakteri Ralstonia pickettii. [Dissertation]. Institut Teknologi Sepuluh Nopember, Surabaya. [Indonesian]
Bosco F, Mollea C, Ruggeri B. 2017. Decolorization of Congo Red by Phanerochaete chrysosporium: the role of biosorption and biodegradation. Environ Technol 38 (20): 2581-2588.
Cheng N, Li Q, Tang A, Su W, Liu Y. 2017. Decolorization of a variety of dyes by Aspergillus flavus A5p1. Bioprocess Biosyst Eng 41 (4): 511-518.
Chi YH, Koo SS, Oh HT, Lee ES, Park JH, Phan KAT, Wi SD, Bae, SB, Paeng SK, Chae HB, Kang CH, Kim MG, Kim WY, Yun D-J, Lee SY. 2019. The Physiological Functions of Universal Stress Proteins and Their Molecular Mechanism to Protect Plants from Environmental Stresses. Front. Plant Sci. 10.
Darwis AA, Sukara E. 1990. Penuntun Praktikum: Isolasi, Purifikasi dan Karakterisasi Enzim. Institut Pertanian Bogor, Bogor.
Duran-Rivera B, Moreno-Suarez JR, García-Ramírez SI. 2018. Decolorization of a textile effluent and methylene blue by three white rot fungi (WRF), at pilot and laboratory scale. Bionatura 3 (4): 709-714.
Eslami H, Khavidak SS, Salehi F, Khosravi R, Fallahzadeh RA, Peirovi R, Sadeghi S. 2017. Biodegradation of methylene blue from aqueous solution bacteria isolated from contaminated soil. J Adv Environ Health Res 5 (1): 10-15.
Ewida AYI, El-Sesy ME, Zeid AA. 2019. Complete degradation of azo dye acid red 337 by Bacillus megaterium KY848339.1 isolated from textile wastewater. Water Sci 33 (1): 154-161.
Fatihah SW. 2018. Biodekolorisasi Metilen Biru oleh Kultur Campuran Bakteri Pseudomonas Aeruginosa Dan Jamur Pelapuk Putih Phlebia Brevispora. [Dissertation]. Institut Teknologi Sepuluh Nopember, Surabaya. [Indonesian].
Ferreira-Leitão VS, de Carvalho MEA, Bon EPS. 2006. Lignin peroxidase efficiency for methylene blue decolourization: Comparison to reported methods. Dyes Pigm 7 (2007): 230-236.
Fitriana A, Kuswytasari ND. 2013. Potensi Isolat Kapang Koleksi Laboratorium Mikrobiologi dan Bioteknologi Biologi ITS Dalam Mendegradasi Pewarna Azo Orange II. [Dissertation]. Institut Teknologi Sepuluh November, Surabaya. [Indonesian].
Gomaa OM, Momtaz OA. 2015 Copper induction and differential expression of laccase in Aspergillus flavus. Braz J Microbiol 46 (1): 285-292.
Sugiyarto. 2004. Soil Macro-invertebrates Diversity and Inter-Cropping Plants Productivity in Agroforestry System based on Sengon. [Dissertation]. Brawijaya University, Malang. [Indonesian]
Hala Y, Taba P, Manami M. 2010. Fitosorpsi Bilogam Cd (II) dan Cu (II) oleh Chaetoceros calcitrans dalam Media Conwy. Marina Chim Acta 11 (1): 30-35.
He LY, Zhang YF, Ma HY, Su LN, Chen ZJ, Wang QY, Qian M, Sheng XF. 2010. Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44 (1).
Holey BA. 2015. Decolourization of Congo Red dye by bacteria and consortium isolated from dye contaminated soil. Int Res J Sci Eng 3 (3): 107-112.
Ito T, Suto T. 2018. Potential use of bacteria collected from human hands for textile dye decolorization. Water Resour Ind 20: 46-53.
Irawati W, Kusumawati L, Sopiah RN. 2015. The Potency of Acinetobacter sp. Irc2 Isolated from Industrial Wastewater Treatment Plant in Rungkut-Surabaya As A Bioremediation Agent for Heavy Metals. Asian J Microbiol Biotechnol Environ Sci 17 (2): 357–363.
Irawati W, Riak S, Sopiah N, Sulistia S. 2017. Heavy metal tolerance in indigeneous bacteria isolated from the industrial sewage in Kemisan River, Tangerang, Banten, Indonesia. Biodiversitas 18 (4): 1481-1486.
Junqueira JC, Ribeiro MA, Rossoni RD, Barbosa JO, Querido SMR, Jorge AOC. 2010. Antimicrobial Photodynamic Therapy: Photodynamic Antimicrobial Effects of Malachite Green on Staphylococcus, Enterobacteriaceae, and Candida. Photomed Laser Surg 28 (S1).
Kang HW, Yang YH, Kim SW, Kim S, Ro H. 2014. Decolorization of Triphenylmethane Dyes by Wild Mushrooms. Biotechnol Bioprocess Eng 19: 519-525.
Kong L, Xiong Z, Song X, Xia Y, Zhang H, Yang Y, Ai L. 2020. Enhanced Antioxidant Activity in Streptococcus thermophilus by High-Level Expression of Superoxide Dismutase. Front Microbiol 11.
Khandare RV, Govindwar SP. 2016. Microbial Degradation Mechanism of Textile Dye and Its Metabolic Pathway for Environmental Safety. Environ Waste Manag 14: 399-429.
Komarawidjaja W. 2017. Paparan Limbah Cair Industri Mengandung Logam Berat pada Lahan Sawah di Desa Jelegong, Kecamatan Rancaekek, Kabupaten Bandung. Jurnal Teknologi Lingkungan 18 (2): 173-181.
Kumari L, Tiwary D, Mishra PK. 2015. Biodegradation of C.I. Acid Red 1 by indigenous bacteria Stenotrophomonas sp. BHUSSp X2 isolated from dye contaminated soil. Environ Sci Pollut Res 23: 4054-4062.
Lade H, Govindwar S, Paul D. 2015. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor. Int J Environ Res 12 (6): 6894-6918.
Laurensia Y. 2018. Evaluation decolorization of methylene blue using Pelita Harapan University bacterial collection grown on rice bran medium = evaluasi dekolorisasi methylene blue oleh bakteri koleksi Universitas Pelita Harapan yang dikultur dalam medium bekatul. [Dissertation]. Universitas Pelita Harapan, Tangerang. [Indonesian].
Mardigan MT, Martinko JM, Parker J. 2003. Brock Biology of Microorganisms. New Jersey: Prentice Hall.
Michelle, Siregar RAN, Sanjaya A, Lucy J, Pinontoan R. 2020. Methylene blue decolorizing bactéria isolated from water sewage in Yogyakarta, Indonesia. Biodiversitas 21 (3): 1136-1141.
Mota TR, Kato CG, Peralta RA, Bracht A, de Morais GR, Baesso ML, de Souza CGM, Peralta RM. 2015. Decolorization of Congo Red by Ganoderma lucidium laccase: Evaluation of Degradation Products and Toxicity. Water Air Soil Pollut 226 (351): 1-11.
Nachin L, Nannmark U, Nyström T. 2005. Differential Roles of the Universal Stress Proteins of Escherichia coli in Oxidative Stress Resistance, Adhesion, and Motility. J Bacteriol 187 (18).
Nandakumar V, Zhao H, Fritz Z, Krishna V, Koopman B, Moudgil B. 2016. Visible Light Photocatalytic Bacterial Inactivation on Titanium Dioxide Coatings. KONA Powder and Part J 34: 234-240.
Ng IS, Chen T, Lin R, Zhang X, Ni C, Sun D. 2014. Decolorization of Textile Azo Dye and Congo Red by an Isolated Strain of the Dissimilatory Manganese-Reducing Bacterium Shewanella Xiamenensis BC01. Appl Microbiol Biotechnol 98 (5): 2297-2308.
O’Mahony T, Guibal E, Tobin JM. 2002. Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme Microb Technol 31: 456-463.
Ogugbue CJ, Sawidis T. 2011. Assessment of Bio Elimination and Detoxifictaion of Phenothiazine Dye by Bacillus firmus in Synthetic Watewater under High Salt Conditions. J Appl Sci 11: 2886-2897.
Ogugbue CJ, Sawidis T, Oranusi NA. 2012. Bioremoval of chemically different synthetic dyes by Aeromonas hydrophila in simulated wastewater containing dyeing auxiliaries. Ann Microbiol 62: 1141-1153.
Olukanni OD, Osuntoki AA, Awotula AO, Kalyani DC, Gbenle GO, Govindwar SP. 2013. Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus Thuringiensis RUN1. J Microbiol Biotechnol 23 (6): 843-849.
Ramya M, Iyappan S, Manju A, Jiffe JS. 2010. Biodegradation and Decolorization of Acid Red by Acinetobacter radioresistens. J Bioremediat Biodegrad 105: 1-6.
Ratnawati E. 2010. Pengaruh pH, konsentrasi biosorben dan waktu reaksi terhadap penurunan logam berat Pb dengan memanfaatkan limbah industri bir dalam bentuk pellet sebagai biosorben. Jurnal Kimia dan Kemasan 32 (2): 73-78.
Ren S, Guo J, Zeng G, Sun G. 2006. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. App Microbiol Biotechnol 72 (6).
Sekarlangit E, Martani E. 2018. Dekolorisasi Methylene Blue dalam Limbah Cair Industri Tekstil dan Batik oleh Biofilm Konsorsium Bakteri. [Dissertation]. Universitas Gadjah Mada, Jogjakarta. [Indonesian].
Shraddha, Shekher R, Sehgal S, Kamthania M, Kumar A. 2011. Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications. Enzyme Res 2011: 1-11.
Subarno. 2007. Dekolorisasi Limbah Pabrik Cair Industri Tekstil dengan Miselium Omphalina sp. A-1 Amobil. Dinamika Kerajinan dan Batik 24: 1-9.
Sweta PB, Tank SK. 2019. Bioremediation of Remazol Blue RGB by Newly Isolated Bacillus Strain. Austin J Microbiol 5 (1): 1024.
Wahab MFA, Rasid NAA, Yusoff ARHM. 2006. Degradation of Acid Red 27 by the Recombinant Flavin Reductase. KUSTEM 5th Annual Seminar. 2-3 May 2006. [Malaysian]
Williams CL, Neu HM, Gilbreath JJ, Michel SLJ, Zurawski DV, Merrell DS. 2016. Copper Resistance of the Emerging Pathogen Acinetobacter baumannii. Appl Environ Microbiol 82 (20).
Zucca P, Cocco G, Sollai F, Sanjust E. 2015. Fungal laccases as tools for biodegradation of industrial dyes. Biocatalysis 1: 82-108.

Most read articles by the same author(s)

1 2 > >>