Isolation of euryhaline microalgal strains from tropical waters of Brunei Darussalam for potential biomass production

##plugins.themes.bootstrap3.article.main##

WARDINA ROSELI
YASUAKI TANAKA
HUSSEIN TAHA
https://orcid.org/0000-0003-3272-4313

Abstract

Abstract. Roseli W, Tanaka Y, Taha H. 2023. Isolation of euryhaline microalgal strains from tropical waters of Brunei Darussalam for potential biomass production. Biodiversitas 24: 4651-4660. Rapid urbanization has increased the accumulation of excess nitrogen (N) and phosphorus (P) in natural water bodies (eutrophication). Microalgae are seen as a viable candidate to resolve the problem due to their ability to absorb nutrients from the eutrophicated water (phycoremediation). Euryhaline microalgae could significantly benefit because they can tolerate various salinities while maintaining high biomass productivity. This study aimed to isolate euryhaline microalgae from tropical waters and evaluate the algae's potential to produce biomass and absorb nutrients in a wide range of salinities. Three strains labeled W1, W2, and W3 were isolated from Brunei waters and confirmed by DNA barcoding as Desmodesmus sp., Micractinium sp., and Chlorococcum sp., respectively. These strains were screened for salinity tolerance by exposing them to eight conditions (salinity 0, 5, 10, 15, 20, 25, 30, and 35) and evaluated for their high growth performance based on optical density. While the growth of Desmodesmus sp. and Chlorococcum sp. decreased from its highest value by 51% and 45%, respectively, the growth of Micractinium sp. was only reduced by 30%, and therefore, Micractinium sp. was considered to be the most euryhaline species and studied further in the next scale-up experiment. Micractinium sp. was cultivated at salinities of 0, 15, and 30 and recorded the highest biomass production of 54.1 ± 6.0 mg L?1 d?1 at salinity 15. Furthermore, they produced high amounts of N and P in their biomass, indicating that they are suitable for the phycoremediation of eutrophic water bodies. Therefore, Micractinium sp. is a potential candidate for open-pond cultivation because of its tolerance to a wide range of salinities and high biomass productivity.

##plugins.themes.bootstrap3.article.details##

References
Abomohra AE, Jin W, Tu R, Han S, Eid M, Eladel H. 2016. Microalgal biomass production as a sustainable feedstock for biodiesel?: current status and perspectives. Renew Sust Energ Rev 64: 596–606. DOI: 10.1016/j.rser.2016.06.056
Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B. 2013. Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour Technol 131: 188–194. DOI: 10.1016/j.biortech.2012.12.143
Adar O, Kaplan-Levy RN, Banet G. 2016. High temperature Chlorellaceae (Chlorophyta) strains from the Syrian-African Rift Valley: the effect of salinity and temperature on growth, morphology and sporulation mode. Eur J Phycology 51(4): 387–400. DOI: 10.1080/09670262.2016.1193772
Affenzeller MJ, Darehshouri A, Andosch A, Lütz C, Lütz-Meindl U. 2009. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot 60(3): 939-954. DOI: 10.1093/jxb/ern348
Anandraj A, White S, Naidoo D, Mutanda T. 2020. Monitoring the acclimatization of a Chlorella sp. from freshwater to hypersalinity using photosynthetic parameters of pulse amplitude modulated fluorometry. Bioresour Technol 309: 123380. DOI: 10.1016/j.biortech.2020.123380
Asokaraja I, Mubarakali D, Ramasamy P, Bakdev E, Thajuddin N. 2011. Optimization of various growth media to freshwater microalgae for biomass production. Biotechnology (Faisalabad) 10(6): 540–545. DOI: 10.3923/biotech.2011.540.545
Borowitzka MA, Moheimani NR. 2013. Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change 18: 13-25. DOI: 10.1007/s11027-010-9271-9
Chae H, Lim S, Kim HS, Choi HG, Kim JH. 2019. Morphology and phylogenetic relationships of Micractinium (Chlorellaceae, Trebouxiophyceae) taxa, including three new species from Antarctica. Algae 34(4): 267–275. DOI: 10.4490/algae.2019.34.10.15
Chai WS, Tan WG, Halimatul Munawaroh HS, Gupta VK, Ho SH, Show PL. 2021. Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environ Pollut 269: 116236. DOI: 10.1016/j.envpol.2020.116236
Chen J, Li J, Dong W, Zhang X, Tyagi RD, Drogui P, Surampalli RY. 2018. The potential of microalgae in biodiesel production. Renew Sustain Energy Rev 90: 336–346. DOI: 10.1016/j.rser.2018.03.073
Chokshi K, Pancha I, Ghosh A, Mishra S. 2017. Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresour Technol 244: 1376–1383. DOI: 10.1016/j.biortech.2017.05.003
Chokshi K, Pancha I, Trivedi K, George B, Maurya R, Ghosh A, Mishra S. 2015. Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresour Technol 180: 162–171. DOI: 10.1016/j.biortech.2014.12.102
Collos Y, Mornet F, Sciandra A, Waser N, Larson A, Harrison PJ. 1999. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. J Appl Phycol 11: 179–184. DOI: 10.1023/A:1008046023487
Coustets M, Joubert-Durigneux V, Hérault J, Schoefs B, Blanckaert V, Garnier JP, Teissié J. 2015. Optimization of protein electroextraction from microalgae by a flow process. Bioelectrochemistry 103: 74-81. DOI: 10.1016/j.bioelechem.2014.08.022
Deng XY, Gao K, Zhang RC, Addy M, Lu Q, Ren HY, Chen P, Liu YH, Ruan R. 2017. Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production. Bioresour Technol 243: 417–425. DOI: 10.1016/j.biortech.2017.06.141
Ebrahimi E, Salarzadeh A. 2016. The effect of temperature and salinity on the growth of Skeletonema costatum and Chlorella capsulata in vitro. Int J Life Sci 10(1): 40–44.
Erdmann N, Hagemann M. 2001. Salt acclimation of algae and cyanobacteria: a comparison. In: Rai LC, Gaur JP (eds). Algal Adaptation to Environmental Stresses. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-59491-5_11
Hansen HP, Koroleff F. 1999. Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis (3rd ed). Wiley-VCH Verlag GmbH, Weinheim, Germany.
Kirrolia A, Bishnoi NR, Singh R. 2012. Effect of shaking , incubation temperature, salinity and media composition on growth traits of green microalgae Chlorococcum sp. J Algal Biomass Util 3(3): 46–53.
Klausmeier CA, Litchman E, Daufresne T, Levin SA. 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429(6988): 171–174. DOI: 10.1038/nature02454
Li Y, Chen M. 2015. Novel chlorophylls and new directions in photosynthesis research. Funct Plant Biol 42(6): 493-501. DOI: 10.1071/FP14350
Liang K, Zhang Q, Gu M, Cong W. 2013. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol 25: 311-318. DOI: 10.1007/s10811-012-9865-6
Liu N, Guo B, Cao Y, Wang H, Yang S, Huo H, Kong W, Zhang A, Niu S. 2021. Effects of organic carbon sources on the biomass and lipid production by the novel microalga Micractinium reisseri FM1 under batch and fed-batch cultivation. S Afr J Bot 139: 329–337. DOI: 10.1016/j.sajb.2021.02.028
Liu W, Ming Y, Li P, Huang Z. 2012. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation. Plant Physiol Biochem 54: 43–48. DOI: 10.1016/j.plaphy.2012.01.018
Luo L, He H, Yang C, Wen S, Zeng G, Wu M, Zhou Z, Lou W. 2016. Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater. Bioresour Technol 216: 135–141. DOI: 10.1016/j.biortech.2016.05.059
Malla FA, Khan SA, Rashmi, Sharma GK, Gupta N, Abraham G. 2015. Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production. Ecol Eng 75: 343–349. DOI: 10.1016/j.ecoleng.2014.11.038
Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E. 2008. Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99(17): 8137–8142. DOI: 10.1016/j.biortech.2008.03.073
Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S. 2011. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90: 1429-1441. DOI: 10.1007/s00253-011-3170-1
Pancha I, Chokshi K, Maurya R, Trivedi K, Patidar SK, Ghosh A, Mishra S. 2015. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 189: 341–348. DOI: 10.1016/j.biortech.2015.04.017
Pandit PR, Fulekar MH, Karuna MSL. 2017. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environ Sci Pollut Res 24(15): 13437–13451. DOI: 10.1007/s11356-017-8875-y
Pereira H, Gangadhar KN, Schulze PSC, Santos T, De Sousa CB, Schueler LM, Custódio L, Malcata FX, Gouveia L, Varela JCS, Barreira L. 2016. Isolation of a euryhaline microalgal strain, Tetraselmis sp. CTP4, as a robust feedstock for biodiesel production. Sci Rep 6: 1–11. DOI: 10.1038/srep35663
Pozzobon V, Levasseur W, Guerin C, Gaveau-Vaillant N, Pointcheval M, Perré P. 2020. Desmodesmus sp. pigment and FAME profiles under different illuminations and nitrogen status. Bioresour Technol Rep 10: 100409. DOI: 10.1016/j.biteb.2020.100409
Rawat I, Ranjith Kumar R, Mutanda T, Bux F. 2013. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl Energy 103: 444–467. DOI: 10.1016/j.apenergy.2012.10.004
Rees TAV, Cresswell RC, Syrett PJ. 1980. Sodium-dependent uptake of nitrate and urea by a marine diatom. Biochim Biophys Acta Biomembr 596(1): 141–144. DOI: 10.1016/0005-2736(80)90178-9
Ren HY, Liu BF, Kong F, Zhao L, Xie GJ, Ren NQ. 2014. Energy conversion analysis of microalgal lipid production under different culture modes. Bioresour Technol 166: 625–629. DOI: 10.1016/j.biortech.2014.05.106
Ritchie RJ. 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89(1): 27–41. DOI: 10.1007/s11120-006-9065-9
Sahle-Demessie E, Aly Hassan A, El Badawy A. 2019. Bio-desalination of brackish and seawater using halophytic algae. Desalination 465: 104–113. DOI: 10.1016/j.desal.2019.05.002
Samorì G, Samorì C, Guerrini F, Pistocchi R. 2013. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Res 47(2): 791–801. DOI: 10.1016/j.watres.2012.11.006
Singh A, Ummalyma SB. 2020. Bioremediation and biomass production of microalgae cultivation in river watercontaminated with pharmaceutical effluent. Bioresour Technol 307: 123233. DOI: 10.1016/j.biortech.2020.123233
Singh R, Upadhyay AK, Chandra P, Singh DP. 2018. Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresour Technol 270: 489–497. DOI: 10.1016/j.biortech.2018.09.065
Trivedi T, Jain D, Mulla NSS, Mamatha SS, Damare SR, Sreepada RA, Kumar S, Gupta V. 2019. Improvement in biomass, lipid production and biodiesel properties of a euryhaline Chlorella vulgaris NIOCCV on mixotrophic cultivation in wastewater from a fish processing plant. Renew Energ 139(3): 326–335. DOI: 10.1016/j.renene.2019.02.065
Ummalyma SB, Pandey A, Sukumaran RK, Sahoo D. 2018. Bioremediation by microalgae: current and emerging trends for effluents treatments for value addition of waste streams. In: Varjani S, Parameswaran B, Kumar S, Khare S (eds). Biosynthetic Technology and Environmental Challenges. Springer, Singapore. DOI: 10.1007/978-981-10-7434-9_19
von Alvensleben N, Magnusson M, Heimann K. 2016. Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J Appl Phycol 28(2): 861–876. DOI: 10.1007/s10811-015-0666-6
von Alvensleben N, Stookey K, Magnusson M, Heimann K. 2013. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica. PLoS ONE 8(5): e63569. DOI: 10.1371/journal.pone.0063569
Yun CJ, Hwang KO, Han SS, Ri HG. 2019. The effect of salinity stress on the biofuel production potential of freshwater microalgae Chlorella vulgaris YH703. Biomass Bioenergy 127: 105277. DOI: 10.1016/j.biombioe.2019.105277