Evaluation of nutritive values of various non-conventional protein sources as potential feed ingredients for ruminants

##plugins.themes.bootstrap3.article.main##

SAMADI
SITTI WAJIZAH
SAID MIRZA PRATAMA
ANURAGA JAYANEGARA

Abstract

Abstract. Samadi, Wajizah S, Pratama SM, Jayanegara A. 2023. Evaluation of nutritive values of various non-conventional protein sources as potential feed ingredients for ruminants. Biodiversitas 24: 4069-4078. The purpose of this study was to evaluate the nutritive values of various non-conventional protein sources as potential ingredients for ruminants, including chemical composition, in vitro digestibility, rumen fermentation, and methane emissions. Seven various non-conventional protein sources; grasshopper meal (GM), earthworm meal (EWM), fish by-product meal (FbPM), centipede meal (CM), snail meal (SM), ant eggs meal (AEM), mealworm meal (MWM) and one conventional protein source; soybean meal (SBM) were used in this study. All samples were dried at the temperature of 60oC for 24h and ground by the use of a hammer mill to pass a 1 mm sieve. The ground samples were utilized for further analysis, including chemical composition, in vitro digestibility, rumen fermentation, and methane emissions. Incubation was conducted with three replications in the water bath and temperature was maintained at 39ºC for 48h. All data were statistically analyzed using SPSS version 16 and the difference between treatments was stated (P<0.05). The results of the study indicated that all the samples contained various CP. The NDICP and ADICP in samples were low. All samples had high IVDMD and IVOMD, the highest in FbPM (P<0.01). Methane emission of the samples was lower than SBM (P<0.01).

##plugins.themes.bootstrap3.article.details##

References
Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., Godbout, S., & Valéro, J. R. (2012). Bio-processing of agro-byproducts to animal feed. Critical Reviews in Biotechnology, 32(4), 382–400. https://doi.org/10.3109/07388551.2012.659172
AOAC. (2005). Official Methods Of Analysis Of Aoac International 18 Th Edition.
Carro, M. D., & Miller, E. L. (1999). Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semi-continuous culture system (RUSITEC). The British Journal of Nutrition, 82(2), 149–157. https://doi.org/10.1017/s0007114599001300
Chaudhari, S. S., Arakane, Y., Specht, C. A., Moussian, B., Boyle, D. L., Park, Y., Kramer, K. J., Beeman, R. W., & Muthukrishnan, S. (2011). Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 108(41), 17028–17033. https://doi.org/10.1073/pnas.1112288108
Costa, N. Da, & Costa, C. Da. (2017). The Level Of Legumes Supplementation In The Basal Diet Of Rice Straw On Intake And Digestibility Of Ongole Crossbred Cows. 7(10), 13–19.
Diarra, S. S. (2015). Utilisation of snail meal as a protein supplement in poultry diets. World’s Poultry Science Journal, 71(3), 547–554. https://doi.org/10.1017/S0043933915002159
Dijkstra, J., Ellis, J. L., Kebreab, E., Strathe, A. B., López, S., France, J., & Bannink, A. (2012). Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology, 172(1), 22–33. https://doi.org/https://doi.org/10.1016/j.anifeedsci.2011.12.005
FAO. (2011). Livestock in Food Security. Food and Agriculture Organization of the United Nations (FAO).
Faridah, A. N., Yulfiperius, Y., & Andriyeni, A. (2018). PENGARUH PEMBERIAN TEPUNG KEONG MAS DENGAN DOSIS YANG BERBEDA TERHADAP PERTUMBUHAN IKAN SIDAT (Anguilla bicolor). Jurnal Agroqua: Media Informasi Agronomi Dan Budidaya Perairan, 16(2), 109. https://doi.org/10.32663/ja.v16i2.484
Fievez, V., Babayemi, O. J., & Demeyer, D. (2005). Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science and Technology, 123–124, 197–210. https://doi.org/https://doi.org/10.1016/j.anifeedsci.2005.05.001
Finke, M. D. (2007). Estimate of chitin in raw whole insects. Zoo Biology, 26(2), 105–115. https://doi.org/10.1002/zoo.20123
Gerber, P. J., Hristov, A. N., Henderson, B., Makkar, H., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A. T., Yang, W. Z., Tricarico, J. M., Kebreab, E., Waghorn, G., Dijkstra, J., & Oosting, S. (2013). Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal?: An International Journal of Animal Bioscience, 7 Suppl 2, 220–234. https://doi.org/10.1017/S1751731113000876
Hadisusanto, S. , B Badewi. , FK Banola., A. L. (2022). KUALITAS NUTRIEN DAN KECERNAAN IN VITRO BEBERAPA PAKAN LOKAL TERNAK KAMBING DI LAHAN KERING KEPULAUAN NUTRIENT QUALITY AND IN VITRO DIGESTIVITY OF SOME LOCAL FEEDS FOR GOATS IN penelitian untuk memperbaiki kualitas nutrien putak sebagai pakan ternak kambi. 8(April), 9–16.
Hindratiningrum, N., Bata, M., & Santosa, S. A. (2011). Produk Fermentasi Rumen dan Produksi Protein Mikroba Sapi Lokal yang Diberi Pakan Jerami Amoniasi dan Beberapa Bahan Pakan Sumber Energi. Jurnal Agripet, 11(2), 29–34. https://doi.org/10.17969/agripet.v11i2.371
Hutabarat, A., Tafsin, M., & Daulay, A. (2016). KECERNAAN BAHAN KERING DAN BAHAN ORGANIK RANSUM YANG MENGANDUNG KULIT BUAH KAKAO DAN KULIT BUAH PISANG DIFERMENTASI BERBAGAI BIOAKTIVATOR PADA KAMBING KACANG JANTAN: Dry Matter and Organic Matter Digestibility of Diet Containing Cacao Pod and Banana Peel . Jurnal Peternakan Integratif, 3, 281–290. https://doi.org/10.32734/jpi.v3i3.2763
Jayanegara, A., Dewi, S. P., & Ridla, M. (2016). Nutrient content, protein fractionation, and utilization of some beans as potential alternatives to soybean for ruminant feeding. Media Peternakan, 39(3), 195–202. https://doi.org/10.5398/medpet.2016.39.3.195
Jayanegara, A., Goel, G., Makkar, H. P. S., & Becker, K. (2015). Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Animal Feed Science and Technology, 209, 60–68. https://doi.org/https://doi.org/10.1016/j.anifeedsci.2015.08.002
Jayanegara, A., Norovsambuu, T., Makkar, H., & Becker, K. (2009). Tannins determined by various methods as predictors of methane production reduction potential of plants by an in vitro fermentation system. Animal Feed Science and Technology, 150, 230–237. https://doi.org/10.1016/j.anifeedsci.2008.10.011
Jayanegara, A., Yantina, N., Novandri, B., Laconi, E. B., Nahrowi, & Ridla, M. (2017). Evaluation of some insects as potential feed ingredients for ruminants: Chemical composition, in vitro rumen fermentation and methane emissions. Journal of the Indonesian Tropical Animal Agriculture, 42(4), 247–254. https://doi.org/10.14710/jitaa.42.4.247-254
Jin, X., Angelidaki, I., & Zhang, Y. (2016). Microbial Electrochemical Monitoring of Volatile Fatty Acids during Anaerobic Digestion. Environmental Science & Technology, 50(8), 4422–4429. https://doi.org/10.1021/acs.est.5b05267
Jonas-Levi, A., & Martinez, J.-J. I. (2017). The high level of protein content reported in insects for food and feed is overestimated. Journal of Food Composition and Analysis, 62, 184–188. https://doi.org/https://doi.org/10.1016/j.jfca.2017.06.004
Kara, K., Özkaya, S., Erba?, S., & Baytok, E. (2018). Effect of dietary formic acid on the in vitro ruminal fermentation parameters of barley-based concentrated mix feed of beef cattle. Journal of Applied Animal Research, 46(1), 178–183. https://doi.org/10.1080/09712119.2017.1284073
Khan†, T., Khan, N., Ashraf, M., Qureshi, N., Mughal, M., & G.Abbas. (2012). Source, Production and Chemical Composition of Fish Meal in Pakistan. Journal of Veterinary and Animal Science, 2, 65–71.
Khoiriyah, M., Chuzaemi, S., & Sudarwati, H. (2016). EFFECT OF FLOUR AND PAPAYA LEAF EXTRACT (Carica papaya L.) ADDITION TO FEED ON GAS PRODUCTION, DIGESTIBILITY AND ENERGY VALUES IN VITRO. J. Ternak Tropika, 17(2), 74–85.
Krisnan, R., Haryanto, B., & G. Wiryawan, K. (2009). Pengaruh Kombinasi Penggunaan Probiotik Mikroba Rumen dengan Suplemen Katalitik dalam Pakan tehadap Kecernaan dan Karakteristik Rumen Domba. Jitv, 14(4), 262–269.
Lee, M.-C., Hwang, S.-Y., & Chiou, P. W.-S. (2001). Application of Rumen Undegradable Protein on Early Lactating Dairy Goats. Asian-Australas J Anim Sci, 14(11), 1549–1554. https://doi.org/10.5713/ajas.2001.1549
Licitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4), 347–358. https://doi.org/10.1016/0377-8401(95)00837-3
Machmüller, A. (2006). Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agriculture, Ecosystems & Environment, 112(2), 107–114. https://doi.org/https://doi.org/10.1016/j.agee.2005.08.010
Makkar, H. P. S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1–33. https://doi.org/https://doi.org/10.1016/j.anifeedsci.2014.07.008
Martin, C., Morgavi, D. P., & Doreau, M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal?: An International Journal of Animal Bioscience, 4(3), 351–365. https://doi.org/10.1017/S1751731109990620
McDonald, P., Edwards, R. A., & Greenhalgh, J. F. D. (2002). Animal Nutrition (6th ed.). Longman.
Mirahsanti, N. P. N., Suarjana, I. G. K., & Besung, I. N. K. (2022). Angka Lempeng Total Bakteri dan pH pada Cairan Rumen Sapi Bali Jantan yang Dipotong di Rumah Pemotongan Hewan Pesanggaran. Buletin Veteriner Udayana, 158, 446. https://doi.org/10.24843/bulvet.2022.v14.i05.p01
Muchlas, M., Dan, K., Fakultas, M., Universitas, P., Veteran, B. J., & Timur, M.-J. (2014). Pengaruh penambahan daun pohon terhadap kadar VFA dan kecernaan secara in-vitro ransum berbasis ketela pohon. Jurnal Ilmu-Ilmu Peternakan, 24(2), 8–19. http://jiip.ub.ac.id/
Muslim, G., Sihombing, J. E., Fauziah, S., Abrar, A., & Fariani, A. (2014). Aktivitas Proporsi Berbagai Cairan Rumen dalam Mengatasi Tannin dengan Tehnik In Vitro. Jurnal Peternakan Sriwijaya, 3(1), 25–36. https://doi.org/10.33230/jps.3.1.2014.1727
New, T. R. (2007). M.G. Paoletti (ed), Ecological Implications of Minilivestock. Potential of Insects, Rodents, Frogs and Snails. Journal of Insect Conservation, 11(2), 213. https://doi.org/10.1007/s10841-006-9004-2
NRC. (2001). Nutrient Requirements of Dairy Cattle Seventh Revised Edition. National Academi Press.
Nuraliah, S., & Agung, P. L. K. N. (2015). Konsentrasi Asam Lemak Terbang dan Glukosa Darah Domba Ekor Tipis yang Diberi Bungkil Kedelai Terproteksi Tanin (VOLATILE FATTY ACID CONCENTRATION AND BLOOD GLUCOSE ON THIN-TAILED SHEEP GIVEN WITH TANINE-PROTECTED SOYBEAN MEAL). Jurnal Veteriner, 16(3), 448–456.
Ørskov, E. R., & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 92(2), 499–503. https://doi.org/DOI: 10.1017/S0021859600063048
Parakkasi, A. (1999). Ilmu Nutrisi Dan Makanan Ternak Ruminansia. Universitas Indonesia Press.
Pramono, A., Kustono, K., Widayati, D. T., Putro, P. P., Handayanta, E., & Hartadi, H. (2017). Evaluasi Proteksi Sabun Kalsium Sebagai Pakan Suplemen Berdasarkan Kecernaan Bahan Kering, Kecernaan Bahan Organik dan pH In Vitro di dalam Rumen dan Pasca Rumen. Sains Peternakan, 11(2), 70. https://doi.org/10.20961/sainspet.v11i2.4828
Pratama, S. M., Wajizah, S., Jayanegara, A., & Samadi, S. (2019). Evaluation of Agro-Industrial by Products as Potential Local Feed for Ruminant Animals: Chemical Composition, Fiber Fractions and In Vitro Rumen Fermentation. Animal Production, 20(3), 155. https://doi.org/10.20884/1.jap.2018.20.3.715
Pratama, S. M., Wajizah, S., Jayanegara, A., & Samadi, S. (2022). Evaluation of Some Forage as Feed for Ruminant Animal: Chemical Composition, In Vitro Rumen Fermentation, and Methane Emissions. Animal Production, 24(3), 150–160. https://doi.org/10.20884/1.jap.2022.24.3.179
Samadi, Pratama, S. M., Wajizah, S., & Jayanegara, A. (2020). Evaluation of agro-industrial by products as potential local feed for ruminant animals: Volatile fatty acid and NH3 concentration, gas production and methane emission. IOP Conference Series: Earth and Environmental Science, 425(1). https://doi.org/10.1088/1755-1315/425/1/012010
Samadi, S., Wajizah, S., Usman, Y., Riayatsyah, D., & Firdausyi, Z. Al. (2016). Improving Sugarcane Bagasse as Animal Feed by Ammoniation and Followed by Fermentation with Trichoderma Harzianum (in Vitro Study). Animal Production, 18(1), 14–21. https://doi.org/10.20884/1.anprod.2016.18.1.516
Samadi, Wajizah, S., & Munawar, A. A. (2018). Rapid and simultaneous determination of feed nutritive values by means of near infrared spectroscopy. Tropical Animal Science Journal, 41(2), 121–127. https://doi.org/10.5398/tasj.2018.41.2.121
Sandi, S., Wijaya, S. P., Indra, A., Ali, M., Sahara, E., Nurdin, A. S., & Rofiq, N. (2020). Perubahan Kandungan Neutral Detergent Fiber , Acid Detergent Fiber dan In-Vitro True Digestibility Hijauan Rawa dengan dan tanpa Silase Change of Neutral Detergent Fiber , Acid Detergent Fiber , and In -Vitro True Digestibility of Aquatic Forages with and. Jurnal Peternakan Sriwijaya, 9(2), 1–10.
Santoso, B., & Hariadi, T. (2008). The Chemical Composition, in Vitro Nutrient Degradation and Methane Gas Production of Tropical Grasses Preserved with Silage and Hay Methods.
Sniffen, C. J., O’Connor, J. D., Van Soest, P. J., Fox, D. G., & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(11), 3562–3577. https://doi.org/10.2527/1992.70113562x
Sung, H. G., Kobayashi, Y., Chang, J., Ha, A., Hwang, I. H., & Ha, J. K. (2007). Low Ruminal pH Reduces Dietary Fiber Digestion via Reduced Microbial Attachment. Asian-Australas J Anim Sci, 20(2), 200–207. https://doi.org/10.5713/ajas.2007.200
Tanuwiria, U. H., Ayuningsih, B., & Mansyur. (2005). Fermentabilitas dan kecernaan ransum lengkap sapi perah berbasis jerami padi dan pucuk tebu teramoniasi ( in vitro ). Jurnal Ilmu Ternak, 5(2), 64–69.
Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B., & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48(3), 185–197. https://doi.org/https://doi.org/10.1016/0377-8401(94)90171-6
Tilley, J. M. A., & Terry, R. A. (1963). A TWO-STAGE TECHNIQUE FOR THE IN VITRO DIGESTION OF FORAGE CROPS. Grass and Forage Science, 18(2), 104–111. https://doi.org/https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Tilman, A. D., Hartadi, H., Reksohadiprodjo, S., Prawirokusumo, S., & S, L. (1998). Ilmu Makanan Ternak Dasar. Cetakan ke - 4. Gadjah Mada University Press.
Usman, N., & Salah, E. (2019). Kandungan Acid Detergent Fiber Dan Neutral detergent Fiber Jerami Jagung fermentasi Dengan Mengunakan Jamur Trichoderma Viride Dengan Lama Inkubasi Berbeda. Jambura Journal of Animal Science, 1(2), 57–61. https://doi.org/10.35900/jjas.v1i2.2606
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Wahyuni, I. M. D., Muktiani, A., & Christianto, M. (2014). Penentuan Dosis Tanin dan Saponin untuk Defaunasi dan Peningkatan Fermentabilitas Pakan(Determination of tannin and saponin dosage for defaunation improvement feed fermentability). Jitp, 3(3), 133–140.
Xia, J., Ge, C., & Yao, H. (2021). Antimicrobial Peptides from Black Soldier Fly (Hermetia illucens) as Potential Antimicrobial Factors Representing an Alternative to Antibiotics in Livestock Farming. In Animals (Vol. 11, Issue 7). https://doi.org/10.3390/ani11071937
Zhou, Y., Wang, D., Zhou, S., Duan, H., Guo, J., & Yan, W. (2022). Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods (Basel, Switzerland), 11(24). https://doi.org/10.3390/foods11243961

Most read articles by the same author(s)