Evaluation of stingless bee honey quality (Tetragonula laeviceps) based on their physicochemical from different origins

##plugins.themes.bootstrap3.article.main##

AGUSSALIM
ARDO SABIR
MUHAMAD SAHLAN
ALI AGUS

Abstract


Abstract. Agussalim, Sabir A, Sahlan M, Agus A. 2023. Evaluation of stingless bee honey quality (Tetragonula laeviceps) based on their physicochemical from different origins. Biodiversitas 24: 2134-2142. Honey is a natural food mainly composed of sugars and other components such as enzymes, amino acids, organic acids, carotenoids, vitamins, minerals, and aromatic substances. This study aimed to determine the quality of stingless bee honey (Tetragonula laeviceps) based on their physicochemical from different origins of Lombok, Magelang, and Purworejo (Indonesia). The honey was physicochemically analyzed on its moisture, fat, protein (by proximate analysis), energy (bomb calory meter), flavonoid, phenolic, and DPPH antioxidant (spectrophotometer Uv-Vis), organic and amino acids (high-performance liquid chromatography). Honey from Lombok was lower in moisture content (p<0.01) and higher in protein, energy, citric acid, propionic acid, phenolic, flavonoid, DPPH antioxidant, amino acids (aspartic acid, glutamic acid, asparagine, glycine, and threonine) than honey from Magelang and Purworejo (p<0.01). Also, the citric acid of honey from Lombok and Magelang was similar. It was higher than citric acid honey from Purworejo (p<0.01). The lactic acid of honey from Lombok and Purworejo was similar. Both were higher than the lactic acid of honey from Magelang (p<0.05), but not on fat, butyric acid, and other amino acids. Thus, T. laeviceps honey from Lombok has a better quality based on physicochemical than honey Magelang and Purworejo. Honey from T. laevicepsis rich in phenolic and flavonoids to support the higher antioxidant.


##plugins.themes.bootstrap3.article.details##

References
Agus A, Agussalim, Nurliyani, Umami N, Budisatria IGS. 2019. Evaluation of antioxidant activity, phenolic, flavonoid and Vitamin C content of several honeys produced by the Indonesian stingless bee: Tetragonula laeviceps. Livest Res Rural Dev 31 (10): 152.
Agus A, Agussalim, Sahlan M, Sabir A. 2021. Honey sugars profile of stingless bee Tetragonula laeviceps (Hymenoptera: Meliponinae). Biodiversitas 22: 5205-5210. https://doi.org/10.13057/biodiv/d221159.
Agussalim, Agus A. 2022. Production of honey, pot-pollen and propolis production from Indonesian stingless bee Tetragonula laeviceps and the physicochemical properties of honey: A review. Livest Res Rural Dev 34 (8): 66.
Agussalim, Agus A, Nurliyani, Umami N. 2019a. The sugar content profile of honey produced by the Indonesian Stingless bee, Tetragonula laeviceps, from different regions. Livest Res Rural Dev 31 (6): 91.
Agussalim, Agus A, Nurliyani, Umami N, Budisatria IGS. 2019b. Physicochemical properties of honey produced by the Indonesian stingless bee: Tetragonula laeviceps. IOP Conf Ser Earth Environ Sci 387(1): 012084. https://doi.org/10.1088/1755-1315/387/1/012084.
Agussalim, Nurliyani, Umami N, Agus A. 2020. The honey and propolis production from Indonesian stingless bee: Tetragonula laeviceps. Livest Res Rural Dev 32 (8): 121.
Agussalim, Umami N, Nurliyani, Agus A. 2022. Stingless bee honey (Tetragonula laeviceps): Chemical composition and their potential roles as an immunomodulator in malnourished rats. Saudi J Biol Sci 29 (10): 103404. https://doi.org/10.1016/j.sjbs.2022.103404.
Agussalim, Umami N, Nurliyani, Agus A. 2021. The physicochemical composition of honey from Indonesian stingless bee (Tetragonula laeviceps). Biodiversitas 22 (8): 3257-3263. https://doi.org/10.13057/biodiv/d220820.
AOAC. 2005. Official Method of Association of Official Analytical Chemist. 18th Edition. Association of Official Analytical Chemist. Benjamin Franklin Station, Washington D.C.
Aparna AR, Rajalakshmi D. 1999. Honey - its characteristics, sensory aspects, and applications. Food Rev Int 15 (4): 455-471. https://doi.org/10.1080/87559129909541199.
Biluca FC, Bernal J, Valverde S, Ares AM, Gonzaga LV, Costa ACO, Fett R. 2019. Determination of free amino acids in stingless bee (Meliponinae) honey. Food Anal Methods 12: 902-907. https://doi.org/10.1007/s12161-018-01427-x.
Biluca FC, Braghini F, Gonzaga LV, Costa ACO, Fett R. 2016. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). J Food Compos Anal 50: 61-69. https://doi.org/10.1016/j.jfca.2016.05.007.
Biluca FC, da Silva B, Caon T, Mohr ETB, Vieira GN, Gonzaga LV, Vitali L, Micke G, Fett R, Dalmarco EM, Costa ACO. 2020. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res Int 129: 108756. https://doi.org/10.1016/j.foodres.2019.108756.
Brudzynski K, Miotto D. 2011. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem 127: 1023-1030. https://doi.org/10.1016/j.foodchem.2011.01.075.
Chanchao C. 2013. Bioactivity of honey and propolis of Tetragonula laeviceps in Thailand. In: Vit P, Pedro S, Roubik D. (eds). Pot-Honey: A Legacy of Stingless Bees. Springer, New York. pp. 495-505.
Chua LS, Rahaman NLA, Adnan NA, Eddie Tan TT. 2013. Antioxidant activity of three honey samples in relation with their biochemical components. J Anal Methods Chem: 313798. https://doi.org/10.1155/2013/313798.
Chuttong B, Chanbang Y, Sringarm K. Burgett M. 2016. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem 192: 149-155. https://doi.org/10.1016/j.foodchem.2015.06.089.
Codex Alimentarius. 2001. Draft revised standard for standard for honey (at step 10 of the Codex procedure). Alinorm 01: 19-26.
Da S Sant’ana R, de Carvalho CAL, Oda-Souza M, de A Souza B, de S Dias F. 2020. Characterization of honey of stingless bees from the Brazilian semi-arid region. Food Chem 327: 127041. https://doi.org/10.1016/j.foodchem.2020.127041.
Da Silva IAA, Da Silva TMS, Camara CA, Queiroz N, Magnani M, De Novais JS, Soledade LEB, Lima EDO, De Souza AL, De Souza AG. 2013. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chem 141: 3252-3258. https://doi.org/10.1016/j.foodchem.2013.06.072.
Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chem 196: 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051.
Erwan, Astuti M, Syamsuhaidi, Muhsinin M, Agussalim. 2020. The effect of different beehives on the activity of foragers, honey pots number and honey production from stingless bee Tetragonula sp. Livest Res Rural Dev 32 (10): 158.
Erwan, Suhardin, Syamsuhaidi, Purnamasari D K, Muhsinin M, Agussalim. 2021. Propolis mixture production and foragers daily activity of stingless bee Tetragonula sp. in bamboo and box hives. Livest Res Rural Dev 33 (6): 82.
Escuredo O, Dobre I, Fernández-González , Seijo MC. 2014. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149: 84-90. https://doi.org/10.1016/j.foodchem.2013.10.097.
Escuredo O, Míguez M, Fernández-González M, Seijo MC. 2013. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138: 851-856. https://doi.org/10.1016/j.foodchem.2012.11.015.
Ferreira ICFR, Aires E, Barreira JCM, Estevinho LM. 2009. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem 114: 1438-1443. https://doi.org/10.1016/j.foodchem.2008.11.028.
Gül A, Pehlivan T. 2018. Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J Biol Sci 25: 1056-1065. https://doi.org/10.1016/j.sjbs.2018.02.011.
Jensen AB, Evans J, Jonas-Levi A, Benjamin O, Martinez I, Dahle B, Roos N, Lecocq A, Foley K. 2019. Standard methods for Apis mellifera brood as human food. J Apic Res 58 (2): 1-28. https://doi.org/10.1080/00218839.2016.1226606.
Juan-Borrás M, Domenech E, Hellebrandova M, Escriche I. 2014. Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Res Int 60: 86-94. https://doi.org/10.1016/j.foodres.2013.11.045.
Kahono S, Chantawannakul P, Engel MS. 2018. Social bees and the current status of beekeeping in Indonesia. In: Chantawannakul P, Williams G, Neumann P. (eds). Asian Beekeeping in the 21st Century. Springer, Singapore. pp. 287-306.
Karabagias IK, Badeka A, Kontakos S, Karabournioti S, Kontominas MG. 2014. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chem 146: 548-557. https://doi.org/10.1016/j.foodchem.2013.09.105.
Ku? PM, Congiu F, Teper D, Sroka Z, Jerkovi? I, Tuberoso CIG. 2014. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT - Food Sci Technol 55: 124-130. https://doi.org/10.1016/j.lwt.2013.09.016.
Manzanares AB, García ZH, Galdón BR, Rodríguez ER, Romero CD. 2014. Physicochemical characteristics of minor monofloral honeys from Tenerife, Spain. LWT - Food Sci Technol 55: 572-578. https://doi.org/10.1016/j.lwt.2013.09.024.
Michener CD. 2013. The Meliponini. In: Vit P, Pedro SRM, Roubik, DW (eds). Pot - Honey: A Legacy of Stingless Bees. Springer, New York. pp. 3-17.
Mokaya HO, Nkoba K, Ndunda RM, Vereecken NJ. 2022. Characterization of honeys produced by sympatric species of Afrotropical stingless bees (Hymenoptera, Meliponini). Food Chem 366: 130597. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.130597.
Nordin A, Sainik NQAV, Chowdhury SR, Saim AB, Idrus RBH. 2018. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J Food Compos Anal 73: 91-102. https://doi.org/10.1016/j.jfca.2018.06.002.
Oddo LP, Heard TA, Rodríguez-Malaver A, Pérez RA, Fernández-Muiño M, Sancho MT, Sesta G, Lusco L, Vit P. 2008. Composition and antioxidant activity of Trigona carbonaria honey from Australia. J. Med. Food 11, 789-794. https://doi.org/10.1089/jmf.2007.0724.
Rachmawati RD, Agus A, Umami N, Agussalim, Purwanto H. 2022. Diversity, distribution, and nest characteristics of stingless bees (Hymenoptera: Meliponini) in Baluran National Park, East Java, Indonesia. Biodiversitas 23(8): 3890-3901. https://doi.org/10.13057/biodiv/d230805
Ranneh Y, Ali F, Zarei M, Akim AM, Hamid HA, Khazaai H. 2018. Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography-mass spectrometry. LWT - Food Sci Technol 89: 1-9. https://doi.org/10.1016/j.lwt.2017.10.020.
Rodica M, Topal E, Balkanska R, Yücel B, Oravecz T. 2021. Monofloral honeys as a potential source of natural antioxidants, minerals and medicine. Antioxidants 10: 1023. https://doi.org/10.3390/antiox10071023.
Sabir A, Agus A, Sahlan M, Agussalim. 2021. The minerals content of honey from stingless bee Tetragonula laeviceps from different regions in Indonesia. Livest Res Rural Dev 33 (2): 22.
Scepankova H, Saraiva JA, Estevinho LM. 2017. Honey health benefits and uses in medicine. In: Alvarez-Suarez JM (ed). Bee Products - Chemical and Biological Properties. Springer, Switzerland. pp. 83-96.
SNI. 2018. Indonesian National Standard for Honey. Badan Standarisasi Nasional, Jakarta.
Suárez-Luque S, Mato I, Huidobro JF, Simal-Lozano J, Sancho MT. 2002. Rapid determination of minority organic acids in honey by high-performance liquid chromatography. J Chromatogr A 955: 207-214. https://doi.org/10.1016/S0021-9673(02)00248-0.
Suntiparapop K, Prapaipong P, Chantawannakul P. 2012. Chemical and biological properties of honey from Thai stingless bee (Tetragonula leaviceps). J Apic Res 51: 45-52. https://doi.org/10.3896/IBRA.1.51.1.06.
Supeno B, Erwan, Agussalim. 2022. The production of honey and pot-pollen from stingless bee Tetragonula clypearis and their contribution to increase the farmers income in West Lombok, Indonesia. Livest Res Rural Dev 34 (5): 42.
Truzzi C, Annibaldi A, Illuminati S, Finale C, Scarponi G. 2014. Determination of proline in honey: Comparison between official methods, optimization and validation of the analytical methodology. Food Chem 150: 477-481. https://doi.org/10.1016/j.foodchem.2013.11.003.
Villacrés-Granda I, Coello D, Proaño A, Ballesteros I, Roubik DW, Jijón G, Granda-Albuja G, Granda-Albuja S, Abreu-Naranjo R, Maza F, Tejera E, González-Paramás AM, Bullón P, Alvarez-Suarez JM. 2021. Honey quality parameters, chemical composition and antimicrobial activity in twelve Ecuadorian stingless bees (Apidae: Apinae: Meliponini) tested against multiresistant human pathogens. LWT - Food Sci Technol 140: 110737. https://doi.org/10.1016/j.lwt.2020.110737.

Most read articles by the same author(s)

1 2 > >>