Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps

##plugins.themes.bootstrap3.article.main##

ERWAN
AGUSSALIM

Abstract

Abstract. Erwan, Agussalim. 2022. Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps. Biodiversitas 23: 5854-5861. One of the big problems when keeping honeybees is the limited sustainable feed, especially in the rainy season. The objectives of this study were to evaluate the honey quality from the bee Apis cerana based on the chemical composition and honey potency produced by the coconut and sugar palm saps. This study using thirty colonies of the bee A. cerana was divided into six treatments consisting of sugar palm sap without sugar palm pollen, coconut sap without sugar palm pollen, coconut sap of 50% + sugar palm sap of 50% without sugar palm pollen, sugar palm sap was added by sugar palm pollen; coconut sap was added by sugar palm pollen; coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen. The chemical composition of honey from the A. cerana was moisture (20.76 to 21.80%), reducing sugar (62.78 to 68.37%), sucrose (1.44 to 3.42%), diastase enzyme activity (5.17 to 9.04 DN), hydroxymethylfurfural (2.24 to 5.81 mg/kg), and acidity (26.00 to 36.33 mL NaOH/kg). Honey potency produced by the coconut and sugar palm saps in 100 hectares area produces honey was 1542.857 tons/year and 1150 tons/year, respectively. It can be concluded that the quality of A. cerana honey, produced by the sugar palm and coconut saps, is acceptable by the Indonesian national and international standards. The sugar palm and coconut saps have big potential as bee feed, especially for the bee A. cerana.

##plugins.themes.bootstrap3.article.details##

References
Agus A, Agussalim, Sahlan M, Sabir A. 2021. Honey sugars profile of stingless bee Tetragonula laeviceps (Hymenoptera: Meliponinae). Biodiversitas 22: 5205-5210. https://doi.org/10.13057/biodiv/d221159.
Agussalim, Agus A, Nurliyani, Umami N. 2019. The sugar content profile of honey produced by the Indonesian Stingless bee, Tetragonula laeviceps, from different regions. Livest Res Rural Dev 31(6): Article #91. http://www.lrrd.org/lrrd31/6/aguss31091.html.
Agussalim, Agus A, Umami N, Budisatria IGS. 2018. The type of honeybees forages in district of Pakem Sleman and Nglipar Gunungkidul Yogyakarta. Bul Peternak 42(1): 50-56. https://doi.org/10.21059/buletinpeternak.v42i1.28294.
Agussalim, Agus A, Umami N, Budisatria IGS. 2017. Variation of honeybees forages as source of nectar and pollen based on altitude in Yogyakarta. Bul Peternak 41(4): 448-460. https://doi.org/10.21059/buletinpeternak.v41i4.13593.
AOAC. 2005. Official Method of Association of Official Analytical Chemist. 18th Edition. Association of Official Analytical Chemist. Benjamin Franklin Station, Washington D.C.
Balasubramanyam MV. 2021. Factors influencing the transformation of nectar to honey in Apis Cerana Indica. Int J Biol Innov 03: 271-277. https://doi.org/10.46505/ijbi.2021.3204.
Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chem 196: 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051.
Department of Agricultural and Plantations. 2021. Rekapitulasi produksi, luas panen, dan produktivitas aren Provinsi NTB. Dinas Pertanian dan Perkebunan Provinsi NTB, Mataram.
Erwan E, Harun M, Muhsinin M. 2020. The honey quality of Apis mellifera with extrafloral nectar in Lombok West Nusa Tenggara Indonesia. J Sci Sci Educ 1: 1-7. https://doi.org/10.29303/jossed.v1i1.482.
Erwan, Franti, L.D., Purnamasari, D.K., Muhsinin, M., Agussalim, A., 2021a. Preliminary study on moisture, fat, and protein contents of bee bread from Apis cerana from different regions in North Lombok Regency, Indonesia. J Trop Anim Prod 22: 35-41. https://doi.org/10.21776/ub.jtapro.2021.022.01.5
Erwan, Muhsinin M, Agussalim. 2021b. Enhancing honey and bee bread cells number from Indonesian honeybee Apis cerana by feeding modification. Livest Res Rural Dev 33: Article #121. http://www.lrrd.org/lrrd33/10/33121apist.html.
Erwan, Supeno B, Agussalim. 2022. Improving the productivity of local honeybee (Apis cerana) by using feeds coconut sap and sugar palm (sap and pollen) in West Lombok, Indonesia. Livest Res Rural Dev 34: Article #25. http://www.lrrd.org/lrrd34/4/3425apis.html.
Escuredo O, Dobre I, Fernández-González M, Seijo MC. 2014. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149: 84-90. https://doi.org/10.1016/j.foodchem.2013.10.097.
Escuredo O, Míguez M, Fernández-González M, Seijo MC. 2013. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138: 851-856. https://doi.org/10.1016/j.foodchem.2012.11.015.
Guerzou M, Aouissi HA, Guerzou A, Burlakovs J, Doumandji S, Krauklis AE. 2021. From the beehives: Identification and comparison of physicochemical properties of Alergian honey. Resources 10: 94. https://doi.org/https://doi.org/10.3390/resources10100094.
Hepburn HR, Radloff SE. 2011. Biogeography. In: Hepburn HR, Radloff SE (Eds.), Honeybees of Asia. Springer, New York, pp. 51-68. DOI 10.1007/978-3-642-16422-4_3.
Karabagias IK, Badeka A, Kontakos S, Karabournioti S, Kontominas MG. 2014. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chem 146: 548-557. https://doi.org/10.1016/j.foodchem.2013.09.105.
Machado AM, Tomás A, Russo-Almeida P, Duarte A, Antunes M, Vilas-Boas M, Graça Miguel M, Cristina Figueiredo A. 2022. Quality assessment of Portuguese monofloral honeys. Physicochemical parameters as tools in botanical source differentiation. Food Res Int 157: 111362. https://doi.org/10.1016/j.foodres.2022.111362.
Moniruzzaman M, Khalil I, Sulaiman SA, Gan SH. 2013. Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complement Altern Med 13: 1-12.
Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, Emran TB, Simal-Gandara J. 2021. Pharmaceutical prospects of bee products: Special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics 10: 822. https://doi.org/10.3390/antibiotics10070822.
National Standardization Agency of Indonesia. 2018. Indonesian National Standard for Honey. Badan Standarisasi Nasional, Jakarta.
Pasias IN, Kiriakou IK, Kaitatzis A, Koutelidakis AE, Proestos C. 2018. Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chem 242: 513-518. https://doi.org/10.1016/j.foodchem.2017.09.083.
Pohorecka K, Bober A, Skubida M, Zda?ska D, Torój K. 2014. A comparative study of environmental conditions, bee management and the epidemiological situation in apiaries varying in the level of colony losses. J Apic Sci 58: 107-132. https://doi.org/10.2478/JAS-2014-0027.
Puscas A, Hosu A, Cimpoiu C. 2013. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J Chromatogr A 1272: 132-135. https://doi.org/10.1016/j.chroma.2012.11.064.
Radloff SE, Hepburn HR, Engel MS. 2011. The Asian Species of Apis. In: Hepburn HR, Radloff SE (Eds.). Honeybees of Asia. Springer, New York. pp. 1-22. DOI 10.1007/978-3-642-16422-4_1.
Schouten C, Lloyd D, Lloyd H. 2019. Beekeeping with the Asian honey bee (Apis cerana javana Fabr) in the Indonesian islands of Java, Bali, Nusa Penida, and Sumbawa. Bee World 96: 45-49. https://doi.org/10.1080/0005772x.2018.1564497.
Steel RGD, Torrie JH, Zoberer DA. 1997. Principles and Procedures of Statistics a Biometrical Approach. 3rd Edition. McGraw-Hill Inc., New York.
Supeno B, Erwan, Agussalim. 2021. Enhances production of coffee (Coffea robusta): The role of pollinator, forages potency, and honey production from Tetragonula sp. (Meliponinae) in central Lombok, Indonesia. Biodiversitas 22: 4687-4693. https://doi.org/10.13057/biodiv/d221062.
Thrasyvoulou A, Tananaki C, Goras G, Karazafiris E, Dimou M, Liolios V, Kanelis D, Gounari S. 2018. Legislation of honey criteria and standards. J Apic Res 57: 88-96. https://doi.org/10.1080/00218839.2017.1411181.
Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A. 2013. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind Crops Prod 46: 124-131. https://doi.org/10.1016/j.indcrop.2012.12.042.
Wahyuni N, Asfar AMIT, Asfar AMIA, Asrina, Isdar. 2021. Vinegar Nira Aren. Media Sains Indonesia, Tangerang.
Wang Y, Gou X, Yue T, Ren R, Zhao H, He L, Liu C, Cao W. 2021. Evaluation of physicochemical properties of Qinling Apis cerana honey and the antimicrobial activity of the extract against Salmonella Typhimurium LT2 in vitro and in vivo. Food Chem 337: 127774. https://doi.org/10.1016/j.foodchem.2020.127774.
Wu J, Duan Y, Gao Z, Yang X, Zhao D, Gao J, Han W, Li G, Wang S. 2020. Quality comparison of multifloral honeys produced by Apis cerana cerana, Apis dorsata and Lepidotrigona flavibasis. LWT - Food Sci Technol 134: 110225. https://doi.org/10.1016/j.lwt.2020.110225.
Yücel Y, Sultano?lu P. 2013. Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Biosci 1: 16-25. https://doi.org/10.1016/j.fbio.2013.02.001.
Zhang GZ, Tian J, Zhang YZ, Li SS, Zheng HQ, Hu FL. 2021. Investigation of the maturity evaluation indicator of honey in natural ripening process: The case of rape honey. Foods 10: 2882. https://doi.org/10.3390/foods10112882.

Most read articles by the same author(s)