Isolation and molecular identification of halotolerant diazotrophic bacteria from The Northern Coastal of Pemalang, Central Java, Indonesia

##plugins.themes.bootstrap3.article.main##

PURWANTO
EKA OKTAVIANI
NI WAYAN ANIK LEANA

Abstract

Abstract. Purwanto, Oktaviani E, Leana NWA. 2022. Isolation and molecular identification of halotolerant diazotrophic bacteria from The Northern Coastal of Pemalang, Central Java, Indonesia. Biodiversitas 23: 5814-5821. Plant Growth Promoting Bacteria can fix nitrogen, a very important macronutrient for plant growth. However, the application of urea as a source of this macronutrient has a negative impact on the environment. Therefore, developing biofertilizers using N-fixing bacteria is an environmentally friendly technology. Therefore, this research aimed to isolate and analyze the diversity of N2-fixing bacteria from saline rice fields. The soil samples were taken from the rhizosphere of rice plants in Nyamplung Sari Village, Petarukan District, Pemalang Regency. Meanwhile, 9 (nine) isolates of nitrogen-fixing bacteria have been isolated, which can fix N2. The isolates can bind to N2, but only a few can produce IAA. The nitrogen-fixing ability of diazotrophic bacteria ranged from 17.85 ppm to 29.05 ppm. Isolate Jn3 has the highest ability to fix nitrogen, reaching 29.05 ppm, while Jn3, J, J12, J5, Kn1, and A3 can produce IAA with values of 2.00, 2.69, 2.22, 1.76, 3.47, and 1.79 ppm, respectively. Based on the 16S rRNA analysis and phylogeny construction, the isolated bacteria were identified in 3 (three) clusters. The first cluster was identified as Pseudomonas stutzeri and Acinetobacter junii (Kn1 and Jn3), while the second was identified as Bacillus cereus, Bacillus tropicus, Bacillus altitudinis, and Bacillus subtilis (Jn, Jn1, A3, and K3 isolates). The third cluster was identified as Bacillus pumilus, Acinetobacter baumanii, and Acinetobacter schindleri (J12, J5, and J). In addition, our study reported the findings of Acinetobacter baumannii and Acinetobacter schindleri species that can fix nitrogen.

##plugins.themes.bootstrap3.article.details##

References
Aasfar, A., Bargaz, A., Yaakoubi, K., & Hilali, A. (2021). Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front. Microbiol, 12(February), 1–19. https://doi.org/10.3389/fmicb.2021.628379
Abbas, R., Rasul, S., Aslam, K., Baber, M., Shahid, M., Mubeen, F., & Naqqash, T. (2019). Halotolerant PGPR?: A hope for cultivation of saline soils. Journal of King Saud University - Science, 31(4), 1195–1201. https://doi.org/10.1016/j.jksus.2019.02.019
Agustiyani, D. W. I., Dewi, T. K., Laili, N. U. R., Nditasari, A., & Antonius, S. (2021). Exploring biofertilizer potential of plant growth-promoting rhizobacteria candidates from different plant ecosystems. Biodiversitas, 22(5), 2691–2698. https://doi.org/10.13057/biodiv/d220529
Antunes, J.E.L., Lyra, M.C.C.P., Ollero, F.J., Freitas, A.D.S., Oliveira, L.M.S., Araújo, A.S.F., & Figueiredo, M.V.B. (2017). Diversity of plant growth-promoting bacteria associated with sugarcane. Genetics and Molecular Research 16 (2): gmr16029662
Barua, S., Tripathi, S., & Chakraborty, A. (2011). Studies on non-symbiotic diazotrophic bacterial populations of coastal arable saline soils of India. Indian J Microbiol, 51(3), 369–376. https://doi.org/10.1007/s12088-011-0082-9
Faizah, L.N., Budiharjo, A., & Kusdiyantini, E. (2017). Optimasi pertumbuhan dan potensi antagonistik Bacillus pumilus terhadap patogen Xanthomonas campestris serta identifikasi molekuler gen penyandi PKS dan NRPS. Jurnal Akademika Biologi, 6(1), 38-48.
Felsenstein, J. (1985). Confidence Limits on Phylogenies?: An Approach Using the Bootstrap Author ( s ): Joseph Felsenstein Stable URL?: http://www.jstor.org/stable/2408678 . Evolution, 39(4), 783–791.
Firmansyah, F., Yusuf, M., Argarini, O., Perencanaan, D., Sipil, F. T., & Kebumian, P. (2021). Strategi pengendalian alih fungsi lahan sawah di Provinsi Jawa Timur. Jurnal Penataan Ruang, 16(1), 47–53.
Goswami, D., Pithwa, S., Dhandhukia, P., & Janki, N. (2014). Delineating Kocuria turfanensis 2M4 as a credible PGPR?: a novel IAA-producing bacteria isolated from saline desert. Journal of Plant Interactions, 9(1), 566–576. https://doi.org/10.1080/17429145.2013.871650
Green, MR & Sambrook, J. (2012) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
Hall, T. (1999). BioEdit?: a user-friendly biological sequence alignment editor and analysis program for Windows. Nucleid Acid Symposium, 41, 95–98.
Ibarra-Villarreal, A.L., Gandara-Ledezma, A., Godoy-Flores, A.D., Herrera-Sepúlveda, A., Alondra Díaz-Rodríguez, M., Fannie Isela Parra-Cota, F.I., & Santos-Villalobos, S.D. (2021). Salt-tolerant Bacillus species as a promising strategy to mitigate the salinity stress in wheat (Triticum turgidum subsp. durum). Journal of Arid Environments, 186, 104399. doi:10.1016/j.jaridenv.2020.104399
Karolinoerita, V. & Yusuf, W.A. (2020). Salinisasi lahan dan permasalahannya di Indonesia. Jurnal Sumberdaya Lahan, 4(2), 91–99. https://doi.org/10.21082/jsdl.v14n2.2020.91-99
Kumar, A., Kumar, A., & Pratush, A. (2014). Molecular diversity and functional variability of environmental isolates of Bacillus species. SpringerPlus 3:312
Kumar A., Maurya B.R., Raghuwanshi R. (2021). The microbial consortium of indigenous rhizobacteria improving plant health, yield and nutrient content in wheat (Triticum aestivum). Journal of Plant Nutrition, 44(13): 1942-1956
Lalucat, J., Bennasar, A., Bosch, R., & Garc?, E. (2006). Biology of Pseudomonas stutzeri. Microbiology And Molecular Biology Reviews, 70(2), 510–547. https://doi.org/10.1128/MMBR.00047-05
Li, H., Singh, R. K., Singh, P., Song, Q., & Xing, Y. (2017). Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Front. Microbiol, 8, 1–20. https://doi.org/10.3389/fmicb.2017.01268
Miljakovi, D., Marinkovi´, J., & Baleševic-Tubi´c, S. (2020). The Significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8, 1037. doi:10.3390/microorganisms8071037
Moradi, A., Tahmourespour, A., Hoodaji, M., & Khorsandi, F. (2011). Effect of salinity on free living - diazotroph and total bacterial populations of two saline soils. African Journal of Microbiology Research, 5(2), 144–148. https://doi.org/10.5897/AJMR10.838.
Oedjiono, Soetarto, E. S., Moeljopawiro, S., & Djatmiko, H. A. (2014). Promising plant growth promoting rhizobacteria of Azospirillum spp . isolated from iron sand soils, Purworejo Coast, Central Java, Indonesia. Advances in Applied Science Research, 5(3), 302–308.
Otlewska, A., Migliore, M., Dybka-Stepien´, K., Manfredini, A., Struszczyk-Swita, K., Napoli, R., Bia?kowska, A., Canfora, L., & Pinzari, F. (2020). When Salt Meddles Between Plant, Soil, and Microorganisms. Front. Plant Sci. 11:553087. doi: 10.3389/fpls.2020.553087.
Padmavathi, T., Dikshit, R., & Seshagiri, S. (2016). Effect of Rhizophagus spp. and plant growth-promoting Acinetobacter junii on Solanum lycopersicum and Capsicum annuum. Brazilian Journal of Botany, 37(4), DOI 10.1007/s40415-015-0144-z. https://doi.org/10.1007/s40415-015-0144-z
Parvathi, A., Krishna, K., Jose, J., Joseph, N., & Nair, S. (2009). Biochemical and molecular characterization of Bacillus pumilus isolated from coastal environment in Cochin , India. Brazilian Journal of Microbiology, 40, 269–275.
Purwanto, Yuwariah, Y., Sumadi, Simarmat, T. (2017). Nitrogenase activity and IAA production of indigenous diazotroph and its effect on rice seedling growth. AGRIVITA Journal of Agricultural Science, 39(81), 31–37.
Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-pour, N., Engineer, A., Pardesi, K. R., Zinjarde, S., Dhakephalkar, P. K., & Chopade, B. A. (2011). Characterization of plant-growth-promoting traits of Acinetobacter Species Isolated from rhizosphere of Pennisetum glaucum. 21(April), 556–566. https://doi.org/10.4014/jmb.1012.12006
Sachdev, D., Nema, P., & Dhakephalkar, P. (2010). Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiological Research, 165(8), 627–638. https://doi.org/10.1016/j.micres.2009.12.002
Shrivastava, P., & Kumar, R. (2015). Soil salinity?: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
Shultana, R., Tan, A., Zuan, K., Yusop, M. R., & Saud, H. M. (2020). Characterization of salt-tolerant plant growth- promoting rhizobacteria and the effect on growth and yield of saline-affected rice. Plos One, 15(9), 1–16. https://doi.org/10.1371/journal.pone.0238537
Subowo, Y. B. (2015). Penambahan pupuk hayati jamur sebagai pendukung pertumbuhan tanaman padi ( Oryza sativa ) pada tanah salin. Pros Sem Nas Masy Biodiv Indon, 1(2007), 150–154. https://doi.org/10.13057/psnmbi/m010126
Sulasih & Widawati, S. (2016). Pengaruh salinitas dan inokulan bakteri terhadap pertumbuhan tanaman terung (Solanum melongena L.). Berita Biologi, 15(1), 17–25.
Sultana, S., Alam, S., & Manjurul, M. (2021). Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. Journal of Agriculture and Food Research, 4(April), 100150. https://doi.org/10.1016/j.jafr.2021.100150
Suryaman, M., Sunarya, Y., Istarimila, I., & Fudholi, A. (2021). Biocatalysis and agricultural biotechnology effect of salinity stress on the growth and yield of mungbean ( Vigna radiata ( L .) R . Wilczek ) treated with mangosteen pericarp extract. Biocatalysis and Agricultural Biotechnology, 36(June), 102132. https://doi.org/10.1016/j.bcab.2021.102132
Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol, 10(3), 512–526.
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11?: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
Tirry, N., Kouchou, A., Laghmari, G., Lemjereb, M., Hnadi, H., Amrani, K., Bahafid, W., & Ghachtouli, N. El. (2021). Biocatalysis and agricultural biotechnology improved salinity tolerance of Medicago sativa and soil enzyme activities by PGPR. Biocatalysis and Agricultural Biotechnology, 31(July 2020), 101914. https://doi.org/10.1016/j.bcab.2021.101914
Yan, K., Shao, H., Shao, C., & Chen, X. (2013). Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant, 35(10), 2867–2878. https://doi.org/10.1007/s11738-013-1325-7
Yan, Y., Yang, J., Dou, Y., Chen, M., Ping, S., Peng, J., Lu, W., Zhang, W., Yao, Z., Li, H., Liu, W., He, S., Geng, L., Zhang, X., Yang, F., Yu, H., Zhan, Y., Li, D., Lin, Z., & Jin, Q. (2008). Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. PNAS, 105(21), 7564–7569. https://doi.org/10.1073/pnas.0801093105
Yousef, N. M. H. (2018). Capability of Plant Growth-Promoting Rhizobacteria ( PGPR ) for producing indole acetic acid ( IAA ) under extreme conditions. European Journal of Biological Research, 8(4), 174–182.
Zuhri, M. (2018). Alih fungsi lahan pertanian di pantura Jawa Tengah (studi kasus Kabupaten Brebes). Jurnal Litbang Provinsi Jawa Tengah, 6(1), 119–130.
Zuraidah. (2013). Pengujian beberapa bakteri penghambat pertumbuhan Xanthomonas oryzae pv. oryzae pada tanaman padi. Jurnal Ilmiah Pendidikan Biologi, Biologi Edukasi, 5(1), 18–24.