Marker validation for salt tolerance in Indica rice

##plugins.themes.bootstrap3.article.main##

SUPRAYOGI
PRITA SARI DEWI
EKA OKTAVIANI
ALWA WIDI AISYA

Abstract

Abstract. Suprayogi, Dewi PS, Oktaviani, E, Aisya AW. 2022. Marker validation for salt tolerance in Indica riceBiodiversitas 23: 4517-4523The development of salt-tolerantrice variety is of importance with concern to the use of the coastal area for rice production and, consequently, the development ofarapid and accurate method of variety selection. Molecular markers associated with Quantitative Trait Loci (QTL) for salt tolerance in rice have been reported elsewhere. This research aimed to identify molecular markers associated with salt tolerance in rice. The research was carried out from September 2020 to February 2021 at Plant Breeding and Biotechnology Laboratory, Faculty of Agriculture, Jenderal Soedirman University, Indonesia. Nine Simple Sequence Repeat (SSR) markers and one Sequence Tagged Site (STS) marker were evaluated for their association with salt tolerance. The rice varieties consisted of three salt-tolerant varieties,  one salt-sensitive variety, and six commercial varieties. Nona Bokra PCR amplicon was used as a positive control for DNA band scoring. Binary data of the amplicon banding pattern were analyzed using Principal Component Analysis (PCA) to determine the grouping of the evaluated varieties about their tolerance to assigned markers. The result demonstrated that the evaluated rice varieties fell into four groups of marker resemblances. Among the evaluated SSR markers, RM 3412, RM 342, RM 8094, and Wn 11463 significantly contributed to the grouping. The present study confirmed that Wn 11463 is a strong marker for salt tolerance in rice. However, validation needs to be made on a broader range of genotypes to see the significance of RM 8094 and RM 3412 as salt tolerant markers.

##plugins.themes.bootstrap3.article.details##

References
Agricultural Research and Development Agency, Indonesia. 2019. Unsoed Parimas. Available online with updates at https://bbpadi.litbang.pertanian.go.id/index.php/varietas-padi/inbrida-padi-gogo-inpago/unsoed-parimas
Agricultural Research and Development Agency, Indonesia. 2019. Varietas Inpago Unsoed 1. Available online with updates at http://www.litbang.pertanian.go.id/varietas/795/
Ali N, Yeasmin L, Gantait S, Goswami R, Chakraborty S. 2014. Screening of rice landraces for salinity tolerance at seedling stage through morphological and molecular markers. J. Physiol and Mol Bio in Plants 20: 411-423. doi: 10.1007/s12298-014-0250-6
Carsono N, Lukman PN, Damayanti F, Susanto U, Sari S. 2014. Identification of polymorphic molecular markers thought to be associated with high yielding characters in 30 rice genotypes. Chimica Et Natura Acta 2: 91-95. https://doi.org/10.24198/cna.v2.n1.9141
Center for Rice Research, Ministry of Agriculture, Indonesia. 2020. Sistem Informasi Plasma Nutfah Padi. Available online with updates at http://bbpadi.litbang.pertanian.go.id/plasma/index.php-main-disp_padi unggul-noaksesi-Atomita2
Chaudari PR, Mishra DK, Koutu GK, Xalxo SS, Saxena RR, Singh L & Verulkar SB. 2018. Identification and mapping of QTLs for agronomic traits in recombinant inbred line population derived from japonica X Indica sub-species in rice. Journal of Pharmacognosy and Phytochemistry, 7(2):2701-2704.
Cheng J, He Y, Yang B, Lai Y, Wang Z, Zhang H. 2015. Association mapping of seed germination and seedling growth at three conditions in indica rice (Oryza sativa l.). Euphytica 206:1–13. doi : 10.1007/s10681-015-1477-1
Dirgasan KDE, Hasmeda M, Harun U. 2019. Testing of some rice varieties (Oryza sativa L.) on Fe2+ stressing condition at tidal land. Agrosainstek 3: 30-35. https://doi.org/10.33019/agrosainstek.v3i1.55
Emon RM, Islam MM, Halder J, Fan Y. 2015. Genetic diversity and association mapping for salinity tolerance in Bangladeshi rice landraces. The Crop Journal 3: 440-444. https://doi.org/10.1016/j.cj.2015.04.006
Gomez SM, Boophati NM & Kumar SS, Ramasubramanian T, Chensong Z, Jeyaprakash P, Senthil A, Babu RC. 2010. Molecular mapping and location of qtls for drought-resistance traits in indica rice (Oryza sativa L.) lines adapted to target environments. Acta Physiol Plant, 32:355–364. doi: 10.1007/s11738-009-0413-1
Herlina H, and Silitonga TS. 2011. Field selection of resistance of several rice varieties to bacterial leaf blight infection strains IV and VIII. Buletin Plasma Nutfah, 17: 80-87.
Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX. 2009. A previously unknown zinc finger protein, DST, regulates grought and salt tolerance in rice via stomatal aperture control. Genes Dev. 23: 1805-1817. doi:10.1101/gad.1812409
Islam MM, Islam SN, Alam MS. 2015. Molecular characterization of selected landraces of rice for salt tolerance using SSR markers. Int J of Innov and Sci Res 17: 206- 218.
Ismail AM., Horie T. 2017 Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. Annu. Rev. Plant Biol. 68: 405–434. doi: 10.1146/annurev-arplant-042916-040936.
Jain N, Jain S, Saini N, Jain RK. 2006. SSR analysis of chromosome 8 regions associated with aroma and cooked kernel elongation in basmati rice. Euphytica 152: 259-273. doi:10.1007/s10681-006-9212-6
Kebriyaee D, Kordrostami M, Rezadoost MA & Lahiji HS. 2012. QTL analysis of agronomic trait in rice using ssr and adlp markers. Notulae Scientia Biologicae, 4(2):116-123. doi: 10.15835/nsb427501
Khatibani LB, Fakheri BA, Chaleshtori MH, Mahender A, Mahdinejad N, & Ali J. 2019. Genetic mapping and validation of quantitative trait loci (qtl) for the grain appearance and quality traits in rice (Oryza sativa l.) by using recombinant inbred line (ril) population. Int. J. Genomic, 2019:1-13. doi: 10.1155/2019/3160275
Lang NT, Buu BC, Ismail A. 2008. Molecular mapping and marker-assisted selection for salt tolerance in rice (Oryza Sativa L.). Omonrice 16: 50-56.
Lang NT, Phuoc NT, Ha PTT, Buu BC. 2017. Identifying QTLs associated and marker assisted selection for salinity tolerance at the seedling, vegetative and reproductive stages in rice (Oryza sativa L.). Int J of Env Agric and Biot (IJEAB) 2: 2927-2935. doi: 10.22161/ijeab/2.6.20
Liu C, Chen K, Zhao X, Wang X, Shen, C, Zhu Y, Dai M, Qiu X, Yang R, D. Xing, Y. Pang, and J. Xu. 2019. Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under salt field conditions by genome-wide association study. Rice 12:1-13. doi: 10.1186/s12284-019-0349-z
Ma F, Zhu X, Wang H, Wang, S, Cui G, Zhang T, Yang Z, He G, Ling Y, Wang N, & Zhao, F. 2019. Identification of qtl for kernel number-related traits in a rice chromosome segment substitution line and fine mapping of qsp1. The Crop Journal, 494-503. https://doi.org/10.1016/j.cj.2018.12.009
Mizan MFR, Rahman MM, Halder J, Rehana S, Begum S and Islam MM. 2015. Genetic diversity and SSR marker assisted salt screening of rice. Biosci Bioeng Commun 1:29-37.
Nafisah NA, Hairmansis and Sitaresmi T. 2017. Yield of elite rice lines in saline-prone rice fields in Cilamaya Wetan, Karawang. Jurnal Lahan Suboptimal 6:23-32. https://doi.org/10.33230/JLSO.6.1.2017.286
Niones JM. 2004. Five mapping of the salinity tolerance gene on chromosome 1 of rice (Oryza sativa) using near isogenic lines. Dissertation. University of the Philippines Los Banos, Laguna.
Qin H, Li Y, and Huang R. 2020. Advances and Challenges in the Breeding of Salt-Tolerant Rice. Int J Mol Sci. 21(21): 8385. doi: 10.3390/ijms21218385
Rana P, Jain S, Yadav S, Saini N, & Jain RK. 2009. Identification of ssr marker for salt tolerance in rice variety csr10 by selective genotyping. J. Plant Biotechnology, 18(1):87-91. doi: 10.1007/BF03263301
Safitri, H., B.S. Purwoko, I.S. Dewi, S.W. Ardie. 2017. Salinity tolerance of several rice Genotypes at seedling stage. Indonesian J of Agric Sci. 18: 63-68. http//dx.doi.org/10.21082/ijas.v.18.n2.2017.
Saha M, Shanthi P, & Ravi V. 2016. Marker based genetic diversity of rice genotypes for salinity tolerance at panicle initiation stage. Vagetos, 29(1):1-6. doi: 10.5958/2229-4473.2016.00004.5
Shams FD, Kuddus MMA, Nasiruddin KM, Begum SN, & Islam MM. 2012. Genetic analysis of aromatic and quality rice germplasm using microsatellite markers. Plant Tissue Culture and Biotechnology, 22(1). 65-71. http://dx.doi.org/10.3329/ptcb.v22i1.11262
Suprayogi, Purwanto and Salsabila J. 2019. Growth response and yield of saline tolerant rice varietiesf to bio-fertilizer application at North Central Java coastal saline paddy field. IOP Conf. Series: Earth and Envi Sci 406: 012001. doi : 10.1088/1755-1315/406/1/012001
Suprihatno, B., A.A. Daradjat, Satoto, S.E. Baehaki, I.N. Widiarta, A. Setyono, S.D. Indrasari, O.S. Lesmana and H. Sembiring. 2009. Description of Rice Varieties. Center for Rice Research, Ministry of Agriculture, Subang.
Vidal NP, Manful CF, Phama TH, Stewart P, Keough D and Thomas R. 2020. The use of XLSTAT in conducting principal component analysis (PCA) when evaluating the relationships between sensory and quality attributes in grilled foods. MethodsX 22: 100835. doi: 10.1016/j.mex.2020.100835
Wang Z, Wang J, Bao Y, Wu Y and Zhang H. 2011. Quantitative trait loci controlling rice seed germination under salt stress. Euphytica 178: 297–307. doi: 10.1007/s10681-010-0287-8
Wu FL, Yang J, Yu DQ, Xu P. 2020. Identification and Validation a Major QTL from “Sea Rice 86” Seedlings Conferred Salt Tolerance. Agronomy. 10:410. doi: 10.3390/agronomy10030410.
Yen CC. and Lin JH. 2011. Screening, inheritance and linkage marker analyses of salt tolerance in mutated scented japonica rice (Oryza sativa L.). Plant Prod. Sci. 14: 260-269. https://doi.org/10.1626/pps.14.260
Yue B, Xiong L, Xue W, Xing Y, Luo L, Xu C. 2005. Genetic analysis for drought resstance of rice ar reproductive stage in field with different types of soil. Theor Appl Genet, 111: 1127-1136. doi: 10.1007/s00122-005-0040-1
Zannati A, Widyastuti U and Nugroho S. 2015. Germination phase screening of insert mutant rice carrying activation-tagging. Penelitian Pertanian Tanaman Pangan 34: 105-111.
Zarbafi SS, Rabiei B, Ebadi AA, & Ham JH. 2019. Association mapping of traits related to leaf blast disease in rice (Oryza sativa L.). Australasian Plant Pathology. doi: 10.1007/s13313-019-00674-8

Most read articles by the same author(s)