Remediation of chlorpyrifos-contaminated soils by crude secondary metabolites of Trichoderma harzianum T213 and its effect on maize growth

##plugins.themes.bootstrap3.article.main##

LOEKAS SOESANTO
RISMA ARSI SUSANTI
ENDANG MUGIASTUTI
ABDUL MANAN
MURTI WISNU RAGIL SASTYAWAN
JOKO MARYANTO

Abstract

Abstract. Soesanto L, Susanti RA, Mugiastuti E, Manan A, Sastyawan MWR, Maryanto J. 2022. Remediation of chlorpyrifos-contaminated soils by crude secondary metabolites of Trichoderma harzianum T213 and its effect on maize growth. Biodiversitas 23: 2464-2470. The study was conducted to determine the role of Trichoderma harzianum T213 crude secondary metabolites on the growth of maize plants and the reduction of chlorpyrifos on contaminated soils. A randomized block design was used in this study with four treatments. The treatments applied on chlorpyrifos contaminated soil were: without the application of secondary metabolites (0%) and the application of T. harzianum T213 crude secondary metabolites at the concentration of 50, 100, and 150%. Variables observed were residual levels of insecticide in maize, plant height difference, number of leaves, plant fresh weight, and root length. The results showed that the application of T. harzianum T213 crude secondary metabolites effectively increased plant growth, including plant height, the number of leaves, plant fresh weight, and root length compared to control on chlorpyrifos-contaminated soil. The highest percentage (99.54%) of the reduction of chlorpyrifos residue was the application of 100% T. harzianum T213 crude secondary metabolites. It was followed by applying 50 and 150% T. harzianum T213 crude secondary metabolites by 99.39 and 99.14%, respectively.

##plugins.themes.bootstrap3.article.details##

References
Abigail MEA, Samuel MS, Chidambaram R. 2015. Hexavalent chromium biosorption studies using Penicillium griseofulvum MSR1 a novel isolate from tannery effluent site: Box–Behnken optimization, equilibrium, kinetics and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers 49: 156-164. DOI: 10.1016/j.jtice.2014.11.026.
Adetunji AT, Lewu FB, Mulidzi R, Ncube B. 2017. The biological activities of ?-glucosidase, phosphatase and urease as soil quality indicators: a review. J. Soil Sci. Plant Nutr. 17(3). DOI: 10.4067/S0718-95162017000300018.
Aishwarya S, Viswanath HS, Singh A, Singh R. 2020. Biosolubilization of different nutrients by Trichoderma spp. and their mechanisms involved: A review. International Journal of Advances in Agricultural Science and Technology 7(6): 34-39.
Alam A. 2014. Soil degradation: A challenge to sustainable agriculture. International Journal of Scientific Research in Agricultural Sciences 1: 50-55. DOI: 10.12983/ijsras-2014-p0050-0055.
Alvarenga N, Birolli WG, Nitschke M, de O Rezende MO, Seleghim MHR, Porto ALM. 2015. Biodegradation of chlorpyrifos by whole cells of marine-derived fungi Aspergillus sydowii and Trichoderma sp. Microb Biochem Technol 7: 3. DOI: 10.4172/1948-5948.1000194.
Ang EL, Zhao H, & Obbard JP. 2005. Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme and Microbial Technology 37(5): 487-496. DOI: 10.1016/j.enzmictec.2004.07.024.
Arguello G, Alejandra M, Valderrama N, Fredy J, Villa A, Alberto F, Pérez M, & José F. 2020. Environmental risk assessment of chlorpyrifos and TCP in aquatic ecosystems. Revista EIA 17(34). DOI: 10.24050/ reia.v17i34.1313.
Ashraf MA, Maah MJ, & Yusoff I. 2013. Soil contamination, risk assessment and remediation. IntechOpen Book Series. DOI: 10.5772/57287.
Azubuike CC, Chikere CB, Okpokwasili GC. 2016. Bioremediation techniques-classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32: 180. DOI: 10.1007/s11274-016-2137-x.
Berkhout ED, Malan M, Kram T. 2019. Better soils for healthier lives? An econometric assessment of the link between soil nutrients and malnutrition in Sub-Saharan Africa. PLoS ONE 14(1): e0210642. DOI:10.1371/journal.pone.0210642.
Bose S, Kumara PS, Vo DVN. 2021. A review on the microbial degradation of chlorpyrifos and its metabolite TCP. Chemosphere 283: 131447. DOI: 10.1016/j.chemosphere.2021.131447.
Braga RM, Dourado MN, Araújo WL. 2016. Microbial interactions: Ecology in a molecular perspective. Braz. J. Microbiol. 47(1). DOI: 10.1016/j.bjm.2016.10.005.
Brenner ML. 2003. Modern methods for plant growth substance analysis. Annual Review of Plant Physiology 32(1): 511-538. DOI: 10.1146/annurev.pp.32.060181.002455.
Choudhury PP, Singh A, Singh R. 2019. Biodegradation of topramezone by a Trichoderma isolate in soil. Weeds – Journal of Asian-Pacific Weed Science Society 1(1): 43-54.
Dahiya V, Chaubey B, Dhaharwal AK, & Pal S. 2017. Solvent-dependent binding interactions of the organophosphate pesticide, chlorpyrifos (CPF), and its metabolite, 3,5,6-trichloro-2-pyridinol (TCPy), with Bovine Serum Albumin (BSA): A comparative fluorescence quenching analysis. Pesticide Biochemistry and Physiology 139: 92–100. DOI: 10.1016/j.pestbp.2017.04.011.
Fox A, Kwapinski W, Griffiths BS, Schmalenberger A. 2014. The role of sulfur- and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne. FEMS Microbiology Ecology 90(1): 78–91. DOI: 10.1111/1574-6941.12374.
García-Hernández MA,Villarreal-Chiu JF, Garza-González MT. 2017. Metallophilic fungi research: An alternative for its use in the bioremediation of hexavalent chromium. International Journal of Environmental Science and Technology 14: 2023–2038. DOI: 10.1007/s13762-017-1348-5.
Geilfus CM. 2018. Review on the significance of chlorine for crop yield and quality. Plant Sci. 270: 114-122. DOI: 10.1016/j.plantsci.2018.02.014.
Gianfreda L. 2015. Enzymes of importance to rhizosphere processes. J. Soil Sci. Plant Nutr. 15(2). DOI: 10.4067/S0718-95162015005000022.
Gomiero T. 2016. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 8(3): 281. DOI: 10.3390/su8030281.
Halifu S, Deng X, Song X, Song R. 2019. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests 10: 758. DOI:10.3390/f10090758.
Harikumar PS, Sreejith J, & Sreechithra M. 2013. Remediation of endosulfan by biotic and abiotic methods. Journal of Environmental Protection 04(05):418-425. DOI: 10.4236/jep.2013.45050.
Herliana O, Soesanto L, Mawadah E. 2018. Phytobioremediation of cadmium-contaminated soil using combination of Ipomoea reptans Poir and Trichoderma sp. and its effect on spinach growth and yield. Journal of Degraded and Mining Lands Management 6(1): 1519-1526. DOI: 10.15243/jdmlm.2018.061.1519.
Hill MP, Macfadyen S, Nash MA. 2017. Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ. 5: e4179. DOI: 10.7717/peerj.4179.
Hojnik M, Modic M, Ni Y, Filipi? G, Cvelbar U, Walsh JL. 2019. Effective fungal spore inactivation with an environmentally friendly approach based on atmospheric pressure air plasma. Environ. Sci. Technol. 53(4): 1893–1904. DOI: 10.1021/acs.est.8b05386.
Hussain M, Aftab K, Iqbal M, Ali S, Rizwan M, Alkahtani S, Abdel-Daim MM. 2020. Determination of pesticide residue in brinjal sample using HPTLC and developing a cost-effective method alternative to HPLC. Journal of Chemistry 2020, Article ID 8180320, https://doi.org/10.1155/2020/8180320.
Hwang KW, Yoo SC, Lee SE, Moon JK. 2018. Residual level of chlorpyrifos in lettuces grown on chlorpyrifos-treated soils. Appl. Sci. 8(12): 2343. DOI:10.3390/app8122343.
Jacoby R, Peukert M, Succurro A, Koprivova A, & Kopriva S. 2017. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci. 8: 1617. DOI: 10.3389/fpls.2017.01617.
Jaiswal S, Bara JK, Soni R, Shrivastava K. 2017. Bioremediation of chlorpyrifos contaminated soil by microorganism. International Journal of Environment, Agriculture and Biotechnology (IJEAB) 2(4). DOI: 10.22161/ijeab/2.4.21.
Jaroszuk-?cise? J, Ty?kiewicz R, Nowak A, Ozimek E, Majewska M, Hanaka A, Ty?kiewicz K, Pawlik A, Janusz G. 2019. Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Int J Mol Sci. 20(19): 4923. DOI: 10.3390/ijms20194923.
Javaid MK, Ashiq M, Tahir M. 2016. Potential of biological agents in decontamination of agricultural soil. Scientifica Volume 2016, Article ID 1598325, https://doi.org/10.1155/2016/1598325.
Jayanthi M, Kanchana D, Saranraj P, Sujitha D. 2014. Bioadsorption of chromium by Penicillium chrysogenum and Aspergillus niger isolated from tannery effluent. International Journal of Microbiological Research 5(1): 40-47. DOI: 10.5829/idosi.ijmr.2014.5.1.8170.
Jing YD, He ZL, Yang XE. 2017. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B. 8(3): 192–207. DOI: 10.1631/jzus.2007.B0192.
Jones VAS, Dolan L. 2012. The evolution of root hairs and rhizoids. Ann Bot. 110(2): 205–212. DOI: 10.1093/aob/mcs136.
Junk A. 2001. Root hairs and the acquisition of plant nutrients from soil. Journal of Plant Nutrition and Soil Science 164(2): 121-129. DOI: 10.1002/1522-2624(200104)164:2<121::AID-JPLN121>3.0.CO;2-6.
Katayama A, Matsumura F. 1993. Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environmental Toxicology and Chemistry 12(6): 1059-1065. DOI: 10.1002/etc.5620120612.
Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton JN, Pachepsky Y, van der Putten WH, Bardgett RD, Moolenaar S, Mol G, Jansen B, Fresco LO. 2016. The significance of soils and soil science towardsrealization of the United Nations SustainableDevelopment Goals. SOIL 2, 111–128. DOI: 10.5194/soil-2-111-2016.
Khan RAA, Najeeb S, Hussain S, Xie B, Li Y. 2020. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms 8(6): 817. DOI: 10.3390/microorganisms8060817.
Kouipou RMT, Eke P, González IZ, de Aldana BRV, Wakam LN, Boyom FF. 2016. Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of common bean root rot (Fusarium solani). Biological Control 96. DOI: 10.1016/j.biocontrol.2016.01.008.
Lee KY, Strand SE, Doty SL. 2012. Phytoremediation of chlorpyrifos by Populus and Salix. Int J Phytoremediation 14(1): 48–61. DOI: 10.1080/15226514.2011.560213.
Lee SH, Shin H, Kim JH, Ryu KY, Kim HT, Cha B, Cha JS. 2019. Effect on colony growth inhibition of soil-borne fungal pathogens by available chlorine content in sodium hypochlorite. The Plant Pathology Journal 35(2): 156-163. DOI: 10.5423/ppj.oa.07.2018.0123.
Li RX, Cai F, Pang G, Shen QR, Rong L, Chen W. 2015. Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS ONE 10(6): e0130081. DOI: 10.1371/journal.pone.0130081.
Matula M, Kucera T, Soukup O, & Pejchal J. 2020. Enzymatic degradation of organophosphorus pesticides and nerve agents by EC: 3.1.8.2. Catalysts 10: 1365. DOI:10.3390/catal10121365.
Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, & Marfo TD. 2020. Impact of agrochemicals on soil microbiota and management: A Review. Land 9: 34. DOI: 10.3390/land9020034.
Molina MC, Bautista LF, Catalá M, de las Heras MR, Martínez-Hidalgo P, San-Sebastián J, González-Benítez N. 2020. From laboratory tests to the ecoremedial system: The importance of microorganisms in the recovery of PPCPs-disturbed ecosystems. Appl. Sci. 10: 3391. DOI: 10.3390/app10103391.
Mora-Gutiérrez A, Rubio C, Romero-López AA, & Rubio-Osornio M. 2021. Neurotoxic effects of insecticides chlorpyrifos, carbaryl, imidacloprid, in different animal species. IntechOpen Book Series DOI: 10.5772/intechopen.100527.
Ojuederie OB, Babalola OO. 2017. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int J Environ Res Public Health 14(12): 1504. DOI: 10.3390/ijerph14121504.
Olson KR, Al-Kaisi MM. 2015. The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss. CATENA 125: 33-37. DOI: 10.1016/j.catena.2014.10.004.
Pusztahelyi T, Holb IJ, Pócsi I. 2015. Secondary metabolites in fungus-plant interactions. Front Plant Sci. 6: 573. DOI: 10.3389/fpls.2015.00573..
Qin C, Yang B, Zhang W, Ling W, Liu C, Liu J, Li X, & Gao Y. 2019. Organochlorinated pesticides expedite the enzymatic degradation of DNA. Communications Biology 2(81). DOI: 10.1038/s42003-019-0326-5.
Rigoletto M, Calza P, Gaggero E, Malandrino M, Fabbri D. 2020. Bioremediation methods for the recovery of lead-contaminated soils: A review. Appl. Sci. 10(10): 3528. DOI: 10.3390/app10103528.
Santoso SE, Soesanto L, Haryanto TAD. 2007. Biological suppression of moler disease on shallot by Trichoderma harzianum, Trichoderma koningii, and Pseudomonas fluorescens P60. Jurnal Hama dan Penyakit Tumbuhan Tropika 7(1):53-61. http://jhpttropika.fp.unila.ac.id/index.php/jhpttropika/article/view/128.
Sen M & Dastidar MG. 2011. Biosorption of Cr [VI] by resting cells of Fusarium solani. Iran. J. Environ. Health Sci. Eng. 8 (2): 153-158.
Singh A, Shahid M, Srivastava M, Pandey S, Sharma A, & Kumar V. 2014. Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virology & Mycology 3(1). DOI: .4172/2161-0517.1000127.
Silva V, Mol HGJ, Zomer P, Tienstra M, Ritsema CJ, Geissen V. 2019. Pesticide residues in European agricultural soils – A hidden reality unfolded. Science of The Total Environment 653: 1532-1545. DOI: 10.1016/j.scitotenv.2018.10.441.
Soesanto L, Mugiastuti E, Manan A. 2019. Raw secondary metabolites of two Trichoderma harzianum isolates towards vacular streak dieback on cocoa seedlings. Pelita Perkebunan 35(1): 22-32. https://ccrjournal.com/index.php/ccrj/article/view/346/363.
Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A. 2020. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants (Basel) 9(6): 762. DOI: 10.3390/plants9060762.
Tudi M, Ruan HD, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT. 2021. Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health 18(3): 1112. DOI: 10.3390/ijerph18031112.
ur Rahman HU, Asghar W, Nazir W, Sandhu MA, Ahmed A, Khalida N. 2021. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. Science of The Total Environment 755(2): 142649. DOI: 10.1016/j.scitotenv.2020.142649.
Zeilinger S, Gruber S, Bansal R, Mukherjee PK. 2016. Secondary metabolism in Trichoderma – Chemistry meets genomics. Fungal Biology Reviews 30(2): 74-90. DOI: 10.1016/j.fbr.2016.05.001.

Most read articles by the same author(s)

1 2 > >>