The enrichment process and morphological identification of anaerobic fungi isolated from buffalo rumen

##plugins.themes.bootstrap3.article.main##

SINTA AGUSTINA
KOMANG GEDE WIRYAWAN
https://orcid.org/0000-0002-0593-9653
SRI SUHARTI
ANJA MERYANDINI
https://orcid.org/0000-0002-0956-1125

Abstract

Abstract. Agustina S, Wiryawan KG, Suharti S, Meryandini A. 2021. The enrichment process and morphological identification of anaerobic fungi isolated from buffalo rumen. Biodiversitas 23: 469-477. Anaerobic fungi are one of the microbes that have an important role in rumen fiber degradation because they can produce cellulase enzymes and penetrate feed particles. Nevertheless, few studies were performed to test the potential of anaerobic fungi in Indonesia. Therefore, the present study was carried out to evaluate the impact of the enrichment process on pH value, the zoospores population, NH3 (ammonia) concentration, and VFA (Volatile Fatty Acid) proportion. In addition, this research was also performed to isolate anaerobic fungi from buffalo rumen and identify their morphological characteristics. The enrichment stage of anaerobic fungi was carried out using the Hungate method. Results showed that the population of fungi zoospores, pH value, ammonia concentration, the proportion of acetate, and total VFA were significantly affected by the incubation time (P<0.01). In addition, Caecomyces, Neocallimastix, and Piromyces were rumen anaerobic fungi isolated from buffalo rumen with different morphological characteristics. It can be concluded that the incubation time increased the zoospore population, the concentration of NH3, acetate proportion, and total VFA but decreased media's pH value.

##plugins.themes.bootstrap3.article.details##

References
Akin DE, Bonerman WS. 1990. Role of rumen fungi in fiber degradation. Journal of Dairy Science 73:3023-3032. DOI: 10.3168/jds.S0022-0302(90)78989-8.
Antanasova-Pancevska N, Kungulovski D. 2008. Comparison on morphological and enzyme characteristics of anaerobic fungi isolated from Cervus dama. Central European Journal of Biology 3: 69-74. DOI: 10.2478/s11535-007-0046-6.
Barr DJS, Kudo H, Jakober KD, Cheng KJ. 1989. Morpholohy and development of rumen fungi: Neocallimastix sp., Piromyces communis and Orpinomyces bovis gen. nov., sp.nov. Canadian Journal of Botany 67(9): 2815-2824. DOI: 10.1139/b89-361.
Bauchop T. 1989. Biology of gut anaerobic fungi. Biosystems 23: 53-64. DOI: 10.1016/0303-2647(89)90008-7.
Bergman EN. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 70: 567-590. DOI: 10.1152/physrev.1990.70.2.567.
Breton A, Dusser M, Gaillard-Martinie B, Guillot J, Millet L, Prensier G. 1991. Piromyces rhizinflata nov. sp., a stricly anaerobic fungus from faeces of the Saharian ass: a morphological, metabolic and ultrastuctural study. FEMS Microbiology Letters 82: 1-8. DOI: 10.1111/j.1574-6968.1991.tb04830.x.
Callaghan TM, Podmirseg SM, Hohlweck D, Edwards JE, Puniya AK, Dagar SS, Griffith GW. 2015. Buwchfawromyces eastonii gen. nov., sp. Nov.: a new anarobic fungus (Neocallimastigomycota) isolated from buffalo feaces. MycoKeys 9: 11-28. DOI: 10.3897/mycokeys.9.9032.
Chen YC, Tsai SD, Cheng HL, Chien CY, Hu CY, Cheng TY. 2007. Caecomyces sympodialis sp. nov., a new rumen fungus isolated from Bos Indicus. Mycologia 99: 125-130. DOI: 10.3852/mycologia.99.1.125.
Cheng YF, Jin W, Mao, Zhu WY. 2013. Production of citrate by anaerobic fungi in the presence of co-culture methanogens as revealed by 1H NMR sperctrometry. AJAS. 26: 1416-1423. DOI: 10.5713/ajas.2013.13134.
Comlekcioglu U, Ozkose E, Tutus A, Akyol I, Ekinci MS. 2010. Cloning and characterization of cellulose and xylanase coding genes from anaerobic fungus Neocallimastix sp. GMLF1. International Journal of Agriculture & Biology 12: 691-696. DOI: 10–253/DJY/2010/12–5–691–696.
Dagar SS, Kumar S, Griffith GW, Edwards JE, Callaghan TM, Singh R, Nagpal AK, Puniya AK. 2015. A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indiian camel (Canelus dromedarius). Fungal Biology 119: 731-737. DOI: 10.1016/j.funbio.2015.04.005.
Dollhofer V, Podmirseg SM, Callaghan TM, Griffith GW, Fliegerova K. 2015. Anaerobic fungi and their potential for biogas production. Biogas Science and Technology 151: 41-51. DOI: 10.1007/978-3-319-21993-6_2.
Ed-har AA, Widyastuti R, Djajakirana G. 2017. Isolasi dan identifikasi mikroba tanah pendegradasi selulosa dan pektin dari rhizosfer aquilaria malaccensis. Buletin Tanah dan Lahan 1(1): 58-64.
Edwards JE, Forster R, Callaghan TM, Dollhofer V, Dagar SS, Cheng Y, Chang J, Kittelmann S, Fliegerova K, Puniya AK, Henske JK, Gilmore SP, O’Malley MA, Griffith GW, Smidt H. 2017. PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: insights, challenges and opportunities. Frontiers in Microbiology 8: 1-27. DOI: 10.3389/fmicb.2017.01657.
[GLP] General Laboratory Procedure. 1966. Departemen of Dairy Science. Madison (US): University of Wisconsin.
Gordon GLR, Phillips MW. 1998. The role of anaerobic gut fungi in ruminants. Nutrition Research Reviews 11: 133-168. DOI: 10.1079/NRR19980009.
Grant WD, Rhodes LL, Prosser BA, Asher RA. 1986. Production of bacteriolytic enzymes and degradation of bacteria by filamentous fungi. J. of General Microbiol. 132: 2353-2358. DOI: 10.1099/00221287-132-8-2353.
Grenet E, Breton A, Barry P, Fonty G. 1989. Rumen anaerobic fungi and plant substrate colonization as affected by diet composition. Animal Feed Science and Technology 26:55-70. DOI: 10.1016/0377-8401(89)90006-0.
Grutinger RJ, Puniya AK, Callaghan TM, Edwards E, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS. 2014. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiology Ecology 90: 1-17. DOI: 10.1111/1574-6941.12383.
Guo W, Wang W, Bi S, Long R, Ullah F, Shafiq M, Zhou M, Zhang Y. 2020. Characterization of anaerobic rumen fungal community composition in Yak, Tibetan Sheep and Small Tail Han Sheep grazing on the Qinghai-Tibetan Plateau. Animals 10:144-156. DOI: 10.3390/ani10010144.
Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JHD, Jin YS. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. PNAS USA 108: 504-509. DOI: 10.1073/pnas.1010456108.
Hackstein JHP, Baker SE, Heelemond VJJ, Tielens AGM. 2019. Hydrogenosomes of Anaerobic Fungi: An Alternative Way to Adapt to Anaerobic Environments. In: Tachezy J. (eds) Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes. Microbiology Monograps, Vol 9. Switzerland (CH): Springer, Cham. pp. 159-175. DOI: 10.1007/978-3-030-17941-0_7.
Hagen LH, Brooke CG, Shaw CA, Norbeck AD, Piao H, Arntzen M, Olson HM, Copeland A, Isern N, Shukla A, Roux S, Lombard V, Henrissat B, O’Malley MA, Grigoriev IV, Tringe SG, Mackie RI, Pasa-Tolic L, Pope PB, Hess M. 2020. Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber. The ISME Journal 15: 421-434. DOI: 10.1038/s41396-020-00769-x.
Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O’Malley MA. 2014. Anaerobic gut fungi: advances in solution, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol. and Bioeng. 111: 1471-1481. DOI: 10.1002/bit.25264.
Hartinger T, Gresner N, Sudekum KH. 2018. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation. J. Animal. Sci. Biotechnol. 9: 1-21. DOI: 10.1186/s40104-018-0249-x.
Hess M, Paul SS, Puniya AK, Giezen MVD, Shaw C, Edwards JE, Fliegerova K. 2020. Anaerobic fungi: past, present, and future. Frontiers in Microbiology 11: 1-18. DOI: 10.3389/fmicb.2020.584893.
Ho YW, Barr DJS. 1995. Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia 87(5): 655-677. DOI: 10.1080/00275514.1995.12026582.
Hungate RE. 1969. A roll-tube method for cultivation of strict anaerobs. Methods in Microbiol 3(B): 117-132. DOI: 10.1016/S0580-9517(08)70503-8.
Ji S, Jiang T, Yan H, Guo C, Liu J, Su H, Alugongo GM, Shi H, Wang Y, Cao Z, Li S. 2018. Ecological restoration of antibiotic-diturbed gastrointestinal microbiota in foregut and hindgut of cows. Frontier in Cellular and Infection Microbiology 8: 79-91. DOI: 10.3389/fcimb.2018.00079.
Jimenez HR, Edwards JE, Sanderson R, Kingston-Smith AH, McEwan NR, Theodorou MK. 2020. Cut-lenghts of perennial ryegrass leaf-blades influences in vitro fermentation by anaerobic fungus Necallimastix frontalis. Microorganisms 8: 1774-1788. DOI: 10.3390/microorganisms8111774.
Jin Q, Kirk M. 2018. pH as a primary control environmental microbiology: 1. thermodynamic perspective. Front. Environ. Sci. 6: 1-15. DOI: 10.3389/fenvs.2018.00021.
Jin W, Cheng YF, Mao SY, Zhu WY. 2011. Isolation of natural cultures of anaerobic fungi and indigenousy associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresour Technol. 102: 7925-7931. DOI: 10.1016/j.biortech.2011.06.026.
Joblin KN, Naylor GE. 1993. Inhibition of the rumen anaerobic fungus Necallimastix frontalis by fermentation products. Letters in Appl. Microbiol. 16: 254-256. DOI: j.1472-765X.1993.tb01412.x.
Joshi A, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Griffith GW, Dagar SS. 2018. Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys 40: 89-110. DOI: 10.3897/mycokeys.40.28337.
Kamagata Y. 2015. Keys to cultivating uncultured microbes: elaborate enrichment strategies and resuscitation of dormant cells. Microbes Environ. 30: 289-290. DOI: 10.1264/jsme2.ME3004rh.
Kazda M, Langer S, Bengerldorf FR. 2014. Fungi open new possibelities for anaerobic fermentation of organic residues. Energy, Sustainability and Society 4: 1-9. DOI: 10.1186/2192-0567-4-6.
Knight SJ, Klaere S, Morrioson-Whittle P, Goddard MR. 2018. Fungal diversity during fermentation correlates with thiol cocentration in wine. Australian Journal of Grape and Wine Research 24. 105-112. DOI: 10.1111/ajgw.12304.
Kristensen NB, Danfaer A, Tetens V, Agergaard N. 1996. Portal recovery of intraruminally infused short-chain fatty acids in sheep. Animal Science 46: 26-38. DOI: 10.1080/09064709609410921.
Lee SM, Guan LL, Eun JS, Kim CH, Lee SJ, Kim ET, Lee SS. 2015. The effect of anaerobic fungal inoculation on the fermentation characteristics of rice straw silages. J. App. Microbiol. 118: 565-573. DOI: 10.1111/jam.12724.
Lee SS, Ha JK, Cheng KJ. 2000. Influence of an anaerobic fungal culture administration on in vivo ruminal fermentation and nutrient digestion. Animal Feed Science and Technology 88: 201-217. DOI: 10.1016/S0377-8401(00)00216-9.
Li Y, Jin W, Mu C, Cheng Y, Zhu W. 2017. Indigenously associated methanogens intesified the metabolism in hydrogenosomes of anaerobic fungi with xylosa as substrate. J. of Basic Microbiol. 57: 933-940. DOI: 10.1002/jobm.201700132.
Li Y, Meng Z, Xu Y, Shi Q, Ma Y, Aung M, Cheng Y, Zhu W. 2021. Interactions between anaerobic fungi and methanogens in the rumen and their biotechnological potential in biogas production from lignocellulosic materials. Microorganisms 9: 190. DOI: 10.3390/microorganisms9010190.
Lund PA, De Biase D, Liran O, Scheler O, Mira NP, Cetecioglu Z, Fernandez EN, Bover-Cid S, Hall R, Sauer M, O’Byrne C. 2020. Understanding how microorganisms respond to acid pH is central to their control and successful exploitation. Frontiers in Microbioligy 11: 556140. DOI: 10.3389/fmicb.2020.556140.
Marvin-Sikkema FD, Gomes TMP, Grivet JP, Gottschal JC, Prins RA. 1993. Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Arcives of Microbiology 160: 388-396. DOI: 10.1007/BF00252226.
Marvin-Sikkema FD, Lahpor GA, Kraak MN, Gottschal JC, Prins RA. 1992. Characterization of anaerobic fungus from ilama faeces. J. of General Microbiol. 138(10): 2235-2241. DOI: 10.1099/00221287-138-10-2235.
Marvin-Sikkema FD, Richardson AJJ, Stewart CS, Gottschal JC, Prins RA. 1990. Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl. and Environ. Microbiol. 56: 3793-3797. DOI: 10.1128/aem.56.12.3793-3797.1990.
Meletiadis J, Meis JFGM, Mouton JW, Verweij PE. 2001. Analysis of growth characteristics of filamentous fungi in different nutrient media. J. Clin. Microbiol. 39: 478-484. DOI: 10.1128/JCM.39.2.478-484.2001.
Morgavi DP, Sakurada M, Mizokami M, Tomita Y, Onodera R. 1994. Effects of ruminal protozoa on cellulose degradation and the growth of an anaerobic ruminal fungus, Piromyces sp. strain OTS1, in vitro. Appl. and Environ. Microbiol. 60(10): 3718-3723.
Mountfort DO, Orpin CG. 1994. Anaerobic Fungi: Biology, Ecology, and Function. New York (USA): Marcel Dekker, Inc.
Muchsiri M, Hamzah B, Wijaya A, Pambayun R. 2016. Pengaruh jenis dan konsentrasi asam terhadap cuko pempek. AGRITECH 36: 404-409. DOI: 10.22146/agritech.16763.
Nagaraja TG. 2016. Microbiligy of The Rumen. In: Millen D, De Beni Arrigoni M, Lauritano Pacheco R. (eds) Rumenology. Springer, Cham. DOI: 10.1007/978-3-319-30533-2_2.
Nagpal R, Puniya AK, Sehgal JP, Singh K. 2011. In vitro fibrolytic potential of anaerobic rumen fungi from ruminants and non-ruminants herbivores. Mycoscience 52: 31-38. DOI: 10.1007/s10267-010-0071-6.
Orpin CG. 1975. Studies on the rumen flagellate Neocallimastix frontalis. Microbiology 94: 249-262. DOI: 10.1099/00221287-91-2-249.
Orpin CG. 1977. Rumen flagellate Piromonas communis - Its life history and invasion of plant material in rumen. Journal of General Microbiology 99: 107–117. DOI: 10.1099/00221287- 99-1-107.
Paul SS, Deb SM, Punia BS, Singh D, Kumar R. 2010. Fibrolytic potential of anaerobic fungi (Piromyces sp.) isolated from wild cattle and blue bulls in pure culture and effect of their addition on in vitro fermentation of wheat straw and methane emission by rumen fluid buffaloes. J. Sci. Food Agric. 90(7): 1218-1226. DOI: 10.1002/jsfa.3952.
Paul SS, Deb SM, Punia BS, Singh G, Ashar MN, Kumar R. 2011. Effect of feeding isolates of anaerobic fungus Neocallimastix sp. CF 17 on growth rate and fibre digestion in buffalo calves. Archives of Animal Nutrition 65: 215-228. DOI: 10.1080/1745039X.2011.559722.
Peh E, Kittler S, Reich F, Kehrenberg C. 2020. Antimicrobial activity of organic acids against Campylobacter spp. And development of combinations – A synergistic effect?. Plos One 15: 1-13. DOI: 10.1371/journal.pone.0239312.
Peng X, Wilken SE, Lankiewicz TS, Gilmore SP, Brown JL, Henske JK, Swift CL, Salamov A, Barry K, Grigoriev IV, Theodorou MK, Valentine DL, O’Malley. 2021. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nature Microbiology 6: 499-511. DOI: 10.1038/s41564-020-00861-0.
Puniya AK, Salem AZM, Kumar S, Dagar SS, Griffith GW, Puniya M, Ravella SR, Kumar N, Dhewa T, Kumar R. 2015. Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: A review. Journal of Integrative Agriculture 14:550-560. DOI: 10.1016/S2095-3119(14)60837-6.
Reeves RE, Warren LG, Susskind B, Lo H. 1977. An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. Journal of Biological Chemistry 252: 726-731. DOI: 10.1016/S0021-9258(17)32778-3.
Rezaeian M, Beakes GW, Parker DS. 2004. Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycological Research 108: 1227-1233. DOI: 10.1017/S0953756204000929.
Sanjaya Y, Nurhaeni H, Halima M. 2010. Isolasi, identifikasi, dan karakterisasi jamur entomopatogen dari larva Spodoptera litura (Fabriscus). Bionatura-J. Ilmu-ilmu Hayati dan Fisik 12(3): 136-141.
Saye LMG, Navaratna TA, Chong JPJ, O’Malley MA, Theodorou MK, Reilly M. 2021. The anaerobic fungi: challenges and opportunities for industrial lignocellulosic biofuel production. Microorganisms 9: 694-721. DOI: 10.3390/microorganisms9040694.
Sehgal JP, Jit D, Puniya K, Singh K. 2008. Influence of anaerobic fungal administration on growth, rumen fermentation and nutrient digestion in female buffalo calves. J. Anim. and Feed Sci. 17:510-518. DOI: 10.22358/jafs/66678/2008.
Shen H, Lu Z, Xu Z, Shen Z. 2018. Antibiotic pretreatment minimizes dietary affects on reconstucture of rumen fluid and mucosal microbiota in goats. Microbiologyopen 7: e537. DOI: 10.1002/mbo3.537.
Simpson AGB, Cepicka I. 2009. Amitochondriate protists (Diplomonads, parabasalids and oxymonads). In : Schaechter M. Encyclopedia of Microbiology (Third Edition). San Diego (USA): Academic Press. pp. 545-557. DOI: 10.1016/B978-012373944-5.00246-7.
Stanbury P, Whitaker A, Hall SJ. 2017. Chapter 2 - Microbial growth kinetics. in: Convey M. Principles of Fermentation Technology 3rd Edition. Butterworth-Heinemann, Oxford (UK). DOI: 10.1016/B978-0-08-099953-1.00002-8.
Steel RGD, Torrie JH. 1993. Prinsip dan Prosedur Statistika (diterjemahkan dari: Principles and Procedures of Statistic, penerjemah: B. Sumantri). Jakarta(ID): Gramedia.
Storm AC, Kristensen NB, Hanigan MD. 2012. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows. J. Dairy Sci. 95: 2919-2934. DOI: 10.3168/jds.2011-4239.
Suryani NN, Suarna IW, Mahardika IG, Sarini NP. 2020. Rumen fermentation and microbial protein synthesis of Bali cattle heifers (Bos sondaicus) fed ration containing different energy protein level. Jurnal Sain Peternakan Indonesia 15: 187-194. DOI: 10.31186/jspi.id.15.2.187-194.
Suryapratama W, Suhartati FM. 2012. Increasing rumen microbial protein synthesis with additional dietary substrate of Saccharomyces cerevisiase and soybean oil. Animal Production 14: 155-159.
Teunissen MJ, Camp HJM, Orpin CG, Veld JH, Vogels GD. 1991. Comparison of growth characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium. J. of General Microbiol. 137: 1401-1408. DOI: 10.1099/00221287-137-6-1401.
Theodorou MK, Lowe SE, Trinci APJ. 1988. The fermentative characteristics of anaerobic rumen fungi. BioSystems 21: 371-376. DOI: 10.1016/0303-2647(88)90035-4.
Trinci APJ, Lowe SE, Milne A, Theodorou MK. 1988. Growth and survival of rumen fungi. BioSystems 21: 357-363. DOI: 10.1016/0303-2647(88)90033-0.
Vrabi P, Schinagi CW, Artmann DJ, Heiss B, Burgstaller W. 2019. Fungal growth in batch culture-what we could benefit if we start looking closer. Frontiers in Microbiol. 10: 2391- 2401. DOI: 10.3389/fmicb.2019.02391.
Wang X, Liu X, Groenewld JZ. 2017. Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China. Antonie Van Leeuwunhoek 110: 87-103. DOI: 10.1007/s10482-016-0779-1.
Wilken SE, Monk JM, Leggieri PA, Lawson CE, Lankiewicz TS, Seppala S, Daum CG, Jenkins J, Lipzen AM, Mondo SJ, Barry KW, Grigoriev IV, Henske JK, Theodorou MK, Palsson BO, Petzold LR, O’Malley MA. 2021. Experimentally validated reconstruction and analysis of a genoma-scale metabolic model of an anaerobic Neocallimastigomycota fungus. ASM Journal 6: 1-22. DOI: 10.1128/mSystems.00002-21.
Wubah DA, Fuller MS, Akin DE. 1991a. Neocallimastix: a comparative morphological study. Canadian Journal of Botany 69: 835-843. DOI: 10.1139/b91-109.
Yanke LJ, Dong Y, McAllister TA, Bae HD, Cheng KJ. 1993. Comparison of amylolytic and proteolytic activities of ruminal fungi grown on cereal grains. Canadian Journal of Microbiology 39: 817-820. DOI: doi.org/10.1139/m93-121.
Yildirim E, Ince O, Aydin S, Ince B. 2017. Inprovement of biogas potential of anaerobic digesters using rumen fungi. Renewable Energy 109: 346-353. DOI: 10.1016/j.renene.2017.03.021.

Most read articles by the same author(s)

1 2 > >>