Coupling Indonesian indigenous Citrobacter freundii and Chlorella pyrenoidosa strain on the anode of microbial fuel cell with various substrates




Abstract. Fauzan IA, Meryandini A, Ridwan R, Fidriyanto R, Agustini NWS, Santosa DA. 2022. Coupling Indonesian indigenous Citrobacter freundii and Chlorella pyrenoidosa strain on the anode of microbial fuel cell with various substrates. Biodiversitas 23: 2471-2481. Microorganism plays a crucial role in the development of MFC systems. Indigenous to Indonesia, Citrobacter freundii GBH253 is a potential exoelectrogenic bacterium that could be developed into an MFC system. Coupling C. freundii GBH253 with potentially electricity-producing microalgae indigenous to Indonesia, such as Chlorella pyrenoidosa INK, in the anode of an MFC, could result in a more stable and higher electricity output. This study used C. freundii GBH253 and C. pyrenoidosa INK to produce electricity in various substrates. This research was conducted using a Factorial Randomized Block Design and Tukey’s test to determine significant differences between treatments. The result shows that electricity was generated in all treatments. The Bacterium-microalgae combination in acetate substrate can generate power density up to 211,97 mW m-2 and is the most stable compared to others. Bacterium dominates the electricity production in this combination, but the microalgae also play a role in producing electricity and increasing Chemical Oxygen Demand. The pH value of all treatments was higher than 7. Volatile Fatty Acids, like acetate and phenol, were produced in all treatments, whereas butyric acid and propionic acid were produced in several treatments. The Pearson correlation showed that some VFAs are highly correlated with power density.


Das D. 2018. Microbial fuel cell. Cham: Springer International Publishing.
Feng L, Chen Y, Zheng X. 2009. Enhancement of Waste Activated Sludge Protein Conversion and Volatile Fatty Acids Accumulation during Waste Activated Sludge Anaerobic Fermentation by Carbohydrate Substrate Addition: The Effect of pH. Environ. Sci. Technol. 43(12): 4373–4380. DOI:10.1021/es8037142.
Hasanah AS. 2020. Isolasi dan karakterisasi mikrob pereduksi Fe Atau Mn untuk microbial fuel cell. [Thesis]. IPB Univeristy, Bogor. [Indonesian].
Hou Q, Yang Z, Chen S, Pei H. 2020. Using an anaerobic digestion tank as the anodic chamber of an algae-assisted microbial fuel cell to improve energy production from food waste. Water Res. 170: 115305. DOI:10.1016/j.watres.2019.115305.
Huang J, Zhu N, Cao Y, Peng Y, Wu P, Dong W. 2015. Exoelectrogenic Bacterium Phylogenetically Related to Citrobacter freundii, Isolated from Anodic Biofilm of a Microbial Fuel Cell. Appl Biochem Biotechnol. 175(4): 1879–1891. DOI:10.1007/s12010-014-1418-9.
Ingram-Smith C, Martin SR, Smith KS. 2006. Acetate kinase: not just a bacterial enzyme. Trends Microbiol. 14(6): 249–253. DOI:10.1016/j.tim.2006.04.001.
Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG. 2012. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation: Algal-bacterial interactions for delivery of vitamin B12. Environ Microbiol. 14(6): 1466–1476. DOI:10.1111/j.1462-2920.2012.02733.x.
Kim Y-M, Lee S-E, Park B-S, Son M-K, Jung Y-M, Yang S-O, Choi H-K, Hur S-H, Yum JH. 2012. Proteomic Analysis on Acetate Metabolism in Citrobacter sp. BL-4. Int J Biol Sci. 8(1): 66–78. DOI:10.7150/ijbs.8.66.
Kubota K, Watanabe T, Maki H, Kanaya G, Higashi H, Syutsubo K. 2019. Operation of sediment microbial fuel cells in Tokyo Bay, an extremely eutrophicated coastal sea. Bioresource Technol Rep. 6: 39–45. DOI:10.1016/j.biteb.2019.02.001.
Kumar R, Singh L, Wahid ZAb. 2015. Role of microorganisms in microbial fuel cells for bioelectricity production. In: Kalia VC (ed). Microbial Factories. New Delhi: Springer India. 135–154.
Kumara Behera B, Varma A. 2016. Microbial Fuel Cell (MFC). In: Microbial resources for sustainable energy. Cham: Springer International Publishing. 181–221.
Kusmiati, Setiabudhi NA, Agustini NWS. 2020. Effect Of lutein from Chlorella pyrenoidosa INK on the activities and phagocytic capacity on peritoneal macrophage cells of mice infected with Staphylococcus aureus. IOP Conf Ser: Earth Environ Sci. 439: 012058. DOI:10.1088/1755-1315/439/1/012058.
Leyva LA, Bashan Y, Mendoza A, de-Bashan LE. 2014. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense. Naturwissenschaften. 101(10): 819–830. DOI:10.1007/s00114-014-1223-x.
Logan BE. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol. 7(5): 375–381. DOI:10.1038/nrmicro2113.
Marudhupandi T, Gunasundari V, Ajith Kumar TT, Tissera KRA. 2014. Influence of citrate on Chlorella vulgaris for biodiesel production. Biocatal Agri Biotech. 3(4): 386–389. DOI:10.1016/j.bcab.2014.03.008.
Matsena MT, Tichapondwa SM, Chirwa EMN. 2020. Synthesis of biogenic palladium nanoparticles using Citrobacter sp. for application as anode electrocatalyst in a microbial fuel cell. Catalysts. 10(8): 838. DOI:10.3390/catal10080838.
Mazzapioda L, Panero S, Navarra MA. 2019. Polymer electrolyte membranes based on nafion and a superacidic inorganic additive for fuel cell applications. Polymers. 11(5): 914. DOI:10.3390/polym11050914.
Meshram R, Jadhav SK. 2019. Treatment of oil refinery wastewater simultaneously with bioelectricity production in mediator-less microbial fuel cell using native gram positive Bacillus sp. Rese Jour of Pharm and Technol. 12(4): 1953. DOI:10.5958/0974-360X.2019.00327.5.
Mishra M. 2017. Microbial Fuel Cell (MFC): Recent advancement and its application. Int J Pure App Biosci. 5(5): 911–923. DOI:10.18782/2320-7051.2770.
Mulyono T, Misto M, Busroni B, Siswanto S. 2020. Bioelectricity generation from single-chamber microbial fuel cells with various local soil media and green bean sprouts as nutrient. IJRED. 9(3): 423–429. DOI:10.14710/ijred.2020.30145.
Nishio K, Hashimoto K, Watanabe K. 2013. Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter. J Biosci Bioeng. 115(4): 412–417. DOI:10.1016/j.jbiosc.2012.10.015.
Ortiz-Martínez VM, Salar-García MJ, de los Ríos AP, Hernández-Fernández FJ, Egea JA, Lozano LJ. 2015. Developments in microbial fuel cell modeling. Cheml Eng J. 271: 50–60. DOI:10.1016/j.cej.2015.02.076.
Ozdemir M, Enisoglu-Atalay V, Bermek H, Ozilhan S, Tarhan N, Catal T. 2019. Removal of a cannabis metabolite from human urine in microbial fuel cells generating electricity. Bioresource Technol Rep. 5: 121–126. DOI:10.1016/j.biteb.2019.01.003.
Passos VF, Aquino Neto S, Andrade AR de, Reginatto V. 2016. Energy generation in a microbial fuel cell using anaerobic sludge from a wastewater treatment plant. Sci agric (Piracicaba, Braz.). 73(5): 424–428. DOI:10.1590/0103-9016-2015-0194.
Permana D, Putra HE, Djaenudin D. 2018. Preliminary study of the use of Sulphonated Polyether Ether Ketone (SPEEK) as proton exchange membrane for microbial fuel cell (MFC). IJRED. 7(1): 7. DOI:10.14710/ijred.7.1.7-12.
Puig S, Serra M, Coma M, Cabré M, Balaguer MD, Colprim J. 2010. Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresource Technol. 101(24): 9594–9599. DOI:10.1016/j.biortech.2010.07.082.
Ramaraj R, Tsai DD-W, Chen PH. 2015. Carbon dioxide fixation of freshwater microalgae growth on natural water medium. Ecol Eng. 75: 86–92. DOI:10.1016/j.ecoleng.2014.11.033.
Ramaraj R, Unpaprom Y, Dussadee N. 2016. Cultivation of green microalga, Chlorella vulgaris for biogas purification. Int J New Technol. 2(3): 117-122.
Raychaudhuri A, Behera M. 2020. Comparative evaluation of methanogenesis suppression methods in microbial fuel cell during rice mill wastewater treatment. Environ Technol Innov. 17: 100509. DOI:10.1016/j.eti.2019.100509.
Santoro C, Winfield J, Theodosiou P, Ieropoulos I. 2019. Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design. Bioresource Technol Rep. 7: 100297. DOI:10.1016/j.biteb.2019.100297.
Sevda S, Garlapati VK, Sharma S, Bhattacharya S, Mishra S, Sreekrishnan TR, Pant D. 2019. Microalgae at niches of bioelectrochemical systems: A new platform for sustainable energy production coupled industrial effluent treatment. Bioresource Technol Rep. 7: 100290. DOI:10.1016/j.biteb.2019.100290.
da Silva GP, Mack M, Contiero J. 2009. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Adv. 27(1): 30–39. DOI:10.1016/j.biotechadv.2008.07.006.
Sultana R, Adhikary NC, Kalita MC, Talukdar NC, Khan MR. 2019. Use of glycerol as substrate for electricity generation using Citrobacter sp. in a double chambered microbial fuel cell. J Biol Eng Res Rev. 6(1):7.
Venkidusamy K, Hari AR, Megharaj M. 2018. Petrophilic, Fe(III) reducing exoelectrogen Citrobacter sp. KVM11, isolated from hydrocarbon fed microbial electrochemical remediation systems. Front Microbiol. 9: 349. DOI:10.3389/fmicb.2018.00349.
Vilela C, Cordeiro DM, Boas JV, Barbosa P, Nolasco M, Vaz PD, Rudi? S, Ribeiro-Claro P, Silvestre AJD, Oliveira VB, et al. 2020. Poly(4-styrene sulfonic acid)/bacterial cellulose membranes: Electrochemical performance in a single-chamber microbial fuel cell. Bioresource Technol Rep. 9: 100376. DOI:10.1016/j.biteb.2019.100376.
Xu C, Poon K, Choi MMF, Wang R. 2015. Using live algae at the anode of a microbial fuel cell to generate electricity. Environ Sci Pollut Res. 22(20): 15621–15635. DOI:10.1007/s11356-015-4744-8.
Xu S, Liu H. 2011. New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell: New exoelectrogen Citrobacter sp. SX-1. J Appl Microbiol. 111(5): 1108–1115. DOI:10.1111/j.1365-2672.2011.05129.x.
Yadav RK, Chiranjeevi P, Sukrampal, Patil SA. 2020. Integrated drip hydroponics-microbial fuel cell system for wastewater treatment and resource recovery. Bioresource Technol Rep. 9: 100392. DOI:10.1016/j.biteb.2020.100392.
Yang X, Wen L, Liu X, Chen S, Wang Y, Wan C. 2015. Bio-augmentative volatile fatty acid production from waste activated sludge hydrolyzed at pH 12. RSC Adv. 5(62): 50033–50039. DOI:10.1039/C5RA04651C.

Most read articles by the same author(s)

1 2 3 > >>