Evaluation of agronomic and fruit quality traits of miraculin transgenic tomato
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Carsono N, Desiana N, Nurrizqi FM, Elfakhriano IF, Anas, Sari S, Kusumiyati, Ohsawa R, Shimono A, Ezura H. 2022. Evaluation of agronomic and fruit quality traits of miraculin transgenic tomato. Biodiversitas 23: 2004-2009. Tomato cv. Moneymaker has been inserted with miraculin gene which can modify sour taste becomes sweet in the human tongue and, thus, it has potential as a sweetener. Evaluation of agronomic and fruit quality traits for this special transgenic tomato is a major concern that should be performed as substantial equivalence. The study's objective was to compare agronomic and fruit quality traits of transgenic miraculin tomato with those of its wild-type. The experiment employed a randomized block design, one genotype factor with two levels (transgenic vs. non-transgenic tomato cv. Moneymaker), and each was four replicates. Data were subjected to the Student t-test. The study revealed no significant differences between the transgenic tomato plants cv. Moneymaker and the wild type for important agronomic traits such as plant height, stem diameter, leaf area index, fruit weight, fruit weight per cluster, fruit weight per plant, fruit diameter, number of fruits per cluster, number of fruits per plant, and harvest index of miraculin. Some fruit quality traits such as fruit shelf-life, fruit hardness, total soluble solids, and content of glucose, sucrose, and fructose were equivalent to those of its counterpart, suggesting that miraculin transgene did not affect the expression of the observed traits. The miraculin transgenic tomato traits were more likely identical to those of wild-type except for the existence of the miraculin transgene. This will open the possibility for this special transgenic tomato to undergo further environmental safety assessment in the field test facility as a part of the biosafety assessment of genetically modified organism (GMO).
##plugins.themes.bootstrap3.article.details##
References
Agius C, von Tucher S, Poppenberger B, Rozhon W. 2018. Quantification of sugars and organic acids in tomato fruits. MethodsX 5: 537-550. https://doi.org/10.1016/j.mex.2018.05.014
Ambarwati E, Putu MK, Trisnowati S, Murti RH. 2012. Quality of tomato fruits of progenies of two promising lines GM3 and ‘Gondol Putih’. Proceedings of the National Seminar on Agricultural Research Results (in Bahasa Indonesia).
Bahagiawati AH, Herman M. 2008. Legislations and Regulations concerning the Safety of Biotechnology Products and the Status of Plant Biotechnology Products in Indonesia. Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), Bogor, Ministry of Agriculture (in Bahasa Indonesia).
Bawa AS, Anilakumar KR. 2013. Genetically modified foods: safety, risks ad public concerns – a review. J Food Sci Technol 50 (6): 1035-1046. DOI 10.1007/s13197-012-0899-1
Beckles DM, Hong N, Stamova L, Luengwilai K. 2012. Biochemical factors contributing to tomato fruit sugar content: A review. Fruits 67(01):49 – 64. DOI:10.1051/fruits/2011066
Benoit M, Drost HG, Catoni M, Gouil Q, Lopez-Gomollon S, Baulcombe D, Paszkowski J. 2019. Environmental and epigenetic regulation of Rider retrotransposons in tomato. PLoS Genet 15 (9): e1008370. https://doi.org/10.1371/journal. pgen.1008370
Coronel CJ, Gonzalez AI, Ruiz ML, Polanco C. 2018. Analysis of somaclonal variation in transgenic and regenerated plants of Arabidopsis thaliana using methylation related metAFLP and TMD markers. Plant Cell Rep. 37:137-152. DOI 10.1007/s00299-017-2217-x
Dong OX, Ronald PC. 2021. Targeted DNA insertion in plants. PNAS 118 (22): e2004834117. https://doi.org/10.1073/pnas.2004834117
Ezura H, Hiwasa-Tanase K. 2016. Mass production of the taste-modifying protein miraculin in transgenic plants. J.-M. Mérillon, K.G. Ramawat (eds.), Sweeteners, Reference Series in Phytochemistry. DOI 10.1007/978-3-319-26478-3_17-1
Falchi R, Bonghi C, Drincovich MF, Famiani F, Lara MV, Walker RP, Vizzotto G. 2020. Sugar metabolism in stone fruit: source-sink relationships and environmental and agronomical effects. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.573982
Hirai T, Duhita N, Tanase KH, Ezura H. 2011. Cultivation under salt stress increases the concentration of recombinant miraculin in transgenic tomato fruit, resulting in an increase in purification efficiency. Plant Biotechnology 28(4): 387–392. doi: 10.5511/plantbiotechnology.11.0726a.
ISAA. 2016. Global status of commercialized biotech/GM crops: 2016. https://www.isaaa.org/resources/publications/briefs/52/download/isaaa-brief-52-2016.pdf
Jun JW, Shin JH. 2020. Effect of leaf-area management on tomato plant growth in greenhouses. Horticulture, Environment and Biotechnology 61(6):1-8. doi: 10.1007/s13580-020-00283-1.
Kaeppler SM, Kaeppler HF, Rhee Y. 2000. Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43(2-3):179-88. doi: 10.1023/a:1006423110134.
Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK. 2016. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54. doi;10.1007/s13205-016-0389-7.
Kurihara K, Beidler LM. 1968. Taste-modifying protein from miracle fruit. Science 161: 1241–1243. doi: 10.1126 / science.161.3847.1241
Matsaunyane LBT, Dubery IA. 2018. Molecular approaches to address intended and unintended effects and substantial equivalence of genetically modified crops, transgenic crops. In Emerging Trends and Future Perspectives. Khan MS, Malik KA (Eds), IntechOpen, DOI: 10.5772/intechopen.80339.
Misaka T. 2013. Molecular mechanisms of the action of miraculin, a taste-modifying protein. Seminars in Cell and Developmental Biology 24: 222-225. http://dx.doi.org/10.1016/j.semcdb.2013.02.008
Murthy HN, Georgiev MI, Paek KY, Dandin V. 2015. The safety assessment of food ingredients derived from plant cell, tissue and organ cultures: A review. Food Chemistry 176:426-432. Doi:10.1016/j.foodchem.2014.12.075.
Nangare DD, Singh Y, Kumar PS, Minhas. 2016. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Doi:10.1016/j.agwat.2016.03.016.
Naranjo SE. 2014. Effects of GM Crops on Non-target Organisms. In Ricroch A et al. (eds) Plant Biotechnology: Experience and Future Prospects. Springer Science+Business Media Switzerlands. DOI 10.1007/978-3-319-06892-3__11.
OECD. 1993. Safety evaluation of foods derived by modern biotechnology: concepts and principles. Organisation for Economic Co-operation and Development (OECD), Paris. https://www.oecd.org/science/biotrack/41036698.pdf
Ochar K, Blay ET, Asante IK, Nkansah GO. 2019. Evaluation of selected tomato (Solanum lycopersicum L.) cultivars in Ghana for superior fruit yield and yield component traits. Journal of Horticulture 6(3): 262. doi: 10.35248 / 2376-0354.19.06.262
Pachico D. 2003. Regulation of transgenic crops: an international comparison. Colombia. International Center for Tropical Agricultural. http://ciat-library.ciat.cgiar.org/ciat_digital/CIAT/64025.pdf
Ramessar K, Peremarti A, Gómez-Galera S, Naqvi S, Moralejo M, Muñoz P, Capell T, Christou P. 2007. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Research16(3):261-80. doi: 10.1007/s11248-007-9083-1.
Sato M, Hosokawa M, Doi M. 2011. Somaclonal variation isinduced de novo via the tissue culture process: a studyquantifying mutated cells in Saintpaulia. PLoS ONE 6:e23541. doi:10.1371/journal.pone.0023541
Schauzu M. 2000. The concept of substantial equivalence in safety assessment of foods derived from genetically modified organism. AgBiotechNet 2: 1 – 4. https://bfr.bund.de/cm/349/schauzu.pdf
Schnell J, Steele M, Bean J, Neuspiel M, Girard C, Dormann N, Pearson C, Savoie A, Bourbonniere L, Macdonald P. 2015. A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res 24:1-17. DOI 10.1007/s11248-014-9843-7
Schwartz E, Tzulker R, Glazer I, Bar-Ya‘akov I, Wlesman Z, Tripler E, Bar-Ilan, I. 2009. Environmental conditions affect the color, taste, and antioxidant capacity of 11 pomegranate accessions‘ fruits. Journal of Agricultural and Food Chemistry. Vol. 57 No. 19, pp. 9197–9209. doi:10.1021/jf901466c.
Singh AK, Dubey SK. 2017. Transgenic plants and soil microbes. In Dubey SK, Pandey A, Singh R, Sangwan RS. Current Development in Biotechnology and Bioengineering Crop Modification, Nutrition and Food Production. Elsevier. http://dx.doi.org/10.1016/B978-0-444-63661-4.00008-6
Soniya EV, Banerjee, NS, Das MR. 2001. Genetic analysis of somaclonal variation among callus-derived plants of tomato. Current Science 80(9):1213-1215.
Sugaya T, Yano M, Sun HJ, Hirai T, Ezura, H. 2008. Transgenic strawberry expressing the taste-modifying protein miraculin. Plant Biotechnol 25(4): 329–333. doi:10.5511/plantbiotechnology.25.329.
Sun HJ, Cui ML, Ma B, Ezura H. 2006. Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce. FEBS Lett 580(2): 620–626. doi: 10.1016 /jfebslet.2005.12.080.
Sun HJ, Kataoka H, Yano M, Ezura, H. 2007. Genetically stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants. Plant Biotechnol J 5(6): 768-77. doi: 10.1111 / j.1467-7652.2007.00283.x
Smulders M, deKlerk G. 2011. Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146. DOI 10.1007/s10725-010-9531-4
Theerasilp S, Kurihara Y. 1988. Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit. J BiolChem263 (23): 11536–11539. Doi: 10.1016/S0021-9258(18)37991-2
Theerasilp S, Hitotsuya H, Nakajo S, Nakaya K, Nakamura Y, Kurihara Y. 1989. Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin. Journal of Biological Chemistry 264: 6655–6659. doi: 10.1016/S0021-9258(18)83477-9
Turrini A, Sbrana C, Giovannetti M. 2015. Belowground environmental effects of transgenic crops: a soil microbial perspective. Research in Microbiology 166: 121-131. http://dx.doi.org/10.1016/j.resmic.2015.02.006
Uba F, Esandoh EO, Zogho D, Anokye EG. 2020. Physical and mechanical properties of locally cultivated tomatoes in Sunyani, Ghana. Scientific African 10: e00616. https://doi.org/10.1016/j.sciaf.2020.e00616
Wang YM, Hirai T, Kato K, H-Tanase K, Ezura. 2010. Gene dosage and genetic background affect miraculin accumulation in transgenic tomato fruits. Plant Biotecnology 27: 333-338. Doi: 10.5511/plantbiotechnology.27.333
Wong JM, M Kern. 2011. Miracle fruit improves sweetness of a low-calorie dessert without promoting subsequent energy compensation. Appetite 56:163-166. doi:10.1016/j.appet.2010.10.005
Zou Z, Tan J, Li L, Mao H, Zhang X, Qin L, Tianyuan L, Zhuo M. 2017. Modelling of tomato stem diameter growth rate based on physiological responses. Pak. J. Bot. 49(4):1429-1434. https://www.pakbs.org/pjbot/papers/1502352431.pdf
Most read articles by the same author(s)
- NONO CARSONO, ENDAH JUWENDAH, LIBERTY, SANTIKA SARI, FARIDA DAMAYANTI, MEDDY RACHMADI, Optimize 2,4-D concentration and callus induction time enhance callus proliferation and plant regeneration of three rice genotypes , Biodiversitas Journal of Biological Diversity: Vol. 22 No. 7 (2021)
- M. KHAIS PRAYOGA, HERI SYAHRIAN, VITRIA P. RAHADI, M. IQBAL PRAWIRA ATMAJA, HILMAN MAULANA, ANAS, Quality diversity of 35 tea clones (Camellia sinensis var. sinensis) processed for green tea , Biodiversitas Journal of Biological Diversity: Vol. 23 No. 2 (2022)
- GUNGUN WIGUNA, FARIDA DAMAYANTI, SYARIFUL MUBAROK, HIROSHI EZURA, ANAS, Genetic control of fruit shelf life and yield in crossbreeding of Sletr1-2 mutant with Indonesian tropical tomatoes , Biodiversitas Journal of Biological Diversity: Vol. 22 No. 10 (2021)
- NONO CARSONO, GIGIH IBNU PRAYOGA, SANTIKA SARI, MEDDY RACHMADI, Agronomic characteristics and genetic relationship of putative transgenic rice lines of cv. Fatmawati with the Glu-1Dx5 transgene , Biodiversitas Journal of Biological Diversity: Vol. 23 No. 1 (2022)
- ERNI SUMINAR, RAHMAT BUDIARTO, ANNE NURAINI, SYARIFUL MUBAROK, HIROSHI EZURA, Morpho-physiological responses of iaa9 tomato mutants to different levels of PEG simulated drought stress , Biodiversitas Journal of Biological Diversity: Vol. 23 No. 6 (2022)
- ZIDNI MUFLIKHATI, NESTI F. SIANIPAR, MAS RIZKY A. A. SYAMSUNARNO, ANAS, Understanding of genes encoding bioactive compounds from potential medicinal plants in Indonesia as cancer cell inhibitors , Biodiversitas Journal of Biological Diversity: Vol. 24 No. 8 (2023)
- ANAS, FARIDA DAMAYANTI, MOHAMAD KADAPI, NONO CARSONO, SANTIKA SARI, The shifting genetic diversity pattern of Indonesian rice improved varieties from 1943-2019 based on historical pedigree data , Biodiversitas Journal of Biological Diversity: Vol. 23 No. 9 (2022)