The shifting genetic diversity pattern of Indonesian rice improved varieties from 1943-2019 based on historical pedigree data

##plugins.themes.bootstrap3.article.main##

ANAS
FARIDA DAMAYANTI
MOHAMAD KADAPI
NONO CARSONO
SANTIKA SARI

Abstract


Abstract. Anas, Damayanti F, Kadapi M, Carsono N, Sari S. 2022. The shifting genetic diversity pattern of Indonesian rice improved varieties from 1943-2019 based on historical pedigree dataBiodiversitas 23: 4649-4656For rice plants in Indonesia, stagnation in increasing crop yields due to a reduction in genetic diversity is a significant issue. The issue of using the same parents in breeding programs and consumer preferences for a single main variety are among the causes of the narrowing of rice plants' genetic diversity. The purpose of this study is to figure out which ancestors are significant and how the genetic diversity of improved Indonesian rice cultivars has changed over time. Changes in the genetic background of the Indonesian rice gene pool were decided using pedigree analysis by calculating the coefficient of parentage (COP) among varieties. There are 280 ancestors in the rice gene pool. The pedigree map exemplifies the complexities of rice breeding in Indonesia. The four classical ancestors of DGWG, Taichung Native1, China, and Latisail had a noteworthy influence on all irrigated rice plant types (11.22%) and upland rice plant types (8.30%) in the gene pool. The dominance of the phenomenal variety IR64 has been continued by Inpari 32, which is a direct derivative of Ciherang. In the meantime, Inpago9, Luhur 2, and UPLRI ancestors set the foundation for the upland rice plant type. Inpara7 and Inpara9, along with their IRRI-introduced parents (IRRIpara4 and IRRIpara5), had a significant impact on Indonesian tidal rice plants. The A1, Hipa7, and Hipa3 varieties are heavily influenced by the hybrid rice plants of Indonesia.


##plugins.themes.bootstrap3.article.details##

References
Abdullah, BS, Tjokrowidjojo, Sularjo. 2008. Perkembangan Dan Prospek Perakitan Padi Tipe Baru Di Indonesia. J. Litbang Pertanian, 27, 1?9.
Aragón, FM, Oteiza, F, Rud, J.P. 2021. Climate Change and Agriculture: Subsistence Farmers’ Response to Extreme Heat. American Economic Journal: Economic PolicY, 13(1), 1–35. https://doi.org/10.1257/pol.20190316
Badan Pusat Statistik. 2017. Kajian Konsumsi Bahan Pokok Tahun 2017. © BPS RI.
Badan Pusat Statistik..2020. Badan Pusat Statistik Nasional. Data Tanaman Pangan - Padi. https://www.bps.go.id/
Bakti, C, Tanaka, J. 2019. Detection of dominant QTLs for stigma exsertion ratio in rice derived from Oryza rufipogon accession ‘W0120.’ Breeding Science, 150, 143–150. https://doi.org/10.1270/jsbbs.18139
Baltazar, MD, Ignacio, JCI, Thomson, MJ, Ismail, AM, Mendioro, MS, Septiningsih, E M. 2019. QTL mapping for tolerance to anaerobic germination in rice from IR64 and the landrace Kharsu 80A. Breed Sci., 69(2), 227–233. https://doi.org/10.1270/jsbbs.18159
Egan, LM, Hofmann, RW, Seguin, P, Ghamkhar, K, Hoyos-Villegas, V. 2020. Pedigree analysis of pre-breeding efforts in Trifolium spp. germplasm in New Zealand. BMC Genetics, 21(1), 1–13. https://doi.org/10.1186/s12863-020-00912-9
Egan, Lucy ., Hofmann, RW, Barrett, BA, Ghamkhar, K, Hoyos-Villegas, V. 2019. Identification of founding accessions and patterns of relatedness and inbreeding derived from historical pedigree data in a white clover germplasm collection in New Zealand. Crop Science, 59(5), 2087–2099. https://doi.org/10.2135/cropsci2018.11.0688
FAOSTAT. 2020. Food and Agriculture Organization United Nations. FAOSTAT - Crop. http://www.fao.org/faostat/en/#data/QC
Fehr, W. 1987. Principles of Cultivar Development. Theory and Technique, Vol.1. Macmillan Publishing Company.
Gui-Fu, L, Jian, Y, Jun, Z. 2006. Mapping QTL for Biomass Yield and Its Components in Rice (Oryza sativa L.). Acta Genetica Sinica, 33(7), 607–616. https://doi.org/doi.org/10.1016/S0379-4172(06)60090-5
Hoban, S, Campbell, CD, da Silva, JM, Ekblom, R, Funk, WC, Garner, BA, Godoy, JA, Kershaw, F, MacDonald, AJ, Mergeay, J, Minter, M, O’Brien, D, Vinas, IP, Pearson, SK, Pérez-Espona, S, Potter, KM, Russo, IRM, Segelbacher, G, Vernesi, C, Hunter, ME. 2021. Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: Current actions and indicators are insufficient. Biological Conservation, 261, 109233. https://doi.org/10.1016/j.biocon.2021.109233
JMP. 2021. Statistical Discovery from SAS (16.1.0). Scintilla - Copyright (C) 1998-2014 by Neil Hodgson;neilh@scintilla.org.
Kempthorne, O. 1969. An Introduction to Genetic Statistics. Iowa State University Press, Ames.
Malhi, GS, Kaur, M, Kaushik, P. 2021. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability, 13(1318). https://doi.org/10.3390/su13031318
Pertanian, BL. 2021. Varietas Inpari, Berkontribusi dalam Meningkatkan Produksi Padi. Kementerian Pertanian. https://www.litbang.pertanian.go.id/info-teknologi/4289/
Rais, SA, Silitonga, TS, Budiarti, SG, Zuraida, N, Sudjadi, M. 2001. Evaluasi Ketahanan Plasma Nutfah Tanaman Pangan terhadap Cekaman Beberapa Faktor Biotik (Hama dan Penyakit). Prosiding Seminar Hasil Penelitian Rintisan Dan Bioteknologi Tanaman, 163 – 174.
Romdon, AS, Kurniyati, E, Bahri, S, Pramono, J. 2014. Collection of Rice Varieties Description (2nd ed.). BALAI PENGKAJIAN TEKNOLOGI PERTANIAN JAWA TENGAH.
Septiningsih, EM, Prasetiyono, J, Lubis, E, Tai, TH, Tjubaryat, T, Moeljopawiro, S, McCouch, SR. 2003. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. TAG Theoretical and Applied Genetics, 107(8), 1419-32. https://doi.org/10.1007/s00122-003-1373-2
Septiningsih, EM, Trijatmiko, KR, Moeljopawiro, S, McCouch, SR. 2003. Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. TAG Theoretical and Applied Genetics, 107(8), 1433–1441. https://doi.org/10.1007/s00122-003-1376-z.
Shaw, PD, Graham, M, Kennedy, J, Milne, I, Marshall, DF. 2014. Helium: Visualization of large scale plant pedigrees. BMC Bioinformatics, 15(1), 1–15. https://doi.org/10.1186/1471-2105-15-259
Shigemune, A, Miura, K, Sasahara, H, Goto, A, Yoshida, T. 2006. Pedigree Analysis of Rice Bred in Hokuriku Research Center. Jpn. J. Crop Sci., 75(2), 153–158.
Sleper, DA, Poehlman, JM. 2006. Breeding Field Crops (Fifth). Blackwell Publishing.
Susanto, U, Daradjat, AA, Suprihatno, B. 2003. Perkembangan Pemuliaan Padi Sawah Di Indonesia. Jurnal Litbang Pertanian, 22(3), 125–131.
Swamy BPM, Ahmed, HU, Henry, A, Mauleon, R, Dixit, S, Vikram, P, Tilatto, R, Verulkar, SB, Perraju, P, Mandal, NP, Variar, M, Chandrababu, SRR, Singh, ON, Dwivedi, JL, Das, SP, Mishra, KK, Yadaw, RB, Aditya, TL, Karmakar, B, Satoh, K, Moumeni, A, Kikuchi, S, Leung, H, Kumar, A. 2013. Genetic, Physiological, and Gene Expression Analyses Reveal That Multiple QTL Enhance Yield of Rice Mega-Variety IR64 under Drought. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0062795
Swarup, S, Cargill, EJ, Crosby, K, Flagel, L, Kniskern, J, Glenn, KC. 2021. Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61(2), 839–852. https://doi.org/10.1002/csc2.20377
Thomson, MJ, Septiningsih, EM, Suwardjo, F, Santoso, TJ, Silitonga, TS, McCouch, SR. 2007. Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. TAG Theoretical and Applied Genetics, 114(3), 559-68. https://doi.org/10.1007/s00122-006-0457-1
Yoshida, ., Anas, Rosniawaty, S, & Setiamihardja, R. 2009. Genetic Background of Indonesia Rice Germplasm and its Relationship to Agronomic Characteristics and Eating Quality (????????????????????????????????? 1 1). Jpn.J.Crop Sci., 78(3), 335–343. https://doi.org/10.1626/jcs.78.335

Most read articles by the same author(s)