Antibacterial activity of endophytic fungi isolated from the stem bark of jambu mawar (Syzygium jambos)

##plugins.themes.bootstrap3.article.main##

KURRATUL ‘AINI
ELFITA
HARY WIDJAJANTI
ARUM SETIAWAN
ALFIA R. KURNIAWATI

Abstract

Abstract. ‘Aini K, Elfita, Widyajanti H, Setiawan A, Kurniawati AR. 2021. Antibacterial activity of endophytic fungi isolated from the stem bark of jambu mawar (Syzygium jambos). Biodiversitas 23: 521-532. Syzygium jambos (jambu mawar) is widely used in South Sumatra as a traditional medicine to treat various diseases, including pathogenic bacterial infections. Literature studies report that parts of S. jambos have been used worldwide for treating diarrhea accompanied by fever, dysentery, sore throat, diabetes, and other infectious diseases. Endophytic fungi isolated from medicinal plants have high diversity, and the biological activity of their secondary metabolites is associated with their host. Therefore, this study aimed to determine the diversity of endophytic fungi from the stem bark of S. jambos and the antibacterial activity of secondary metabolites of endophytic fungi. Fungal isolates with high antibacterial activity were identified to obtain fungal species, and the structure of their compounds was determined. The disc diffusion method carried the antibacterial activity test against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Salmonella typhi) bacteria. Characteristics of endophytic fungi were identified microscopically and macroscopically. Active endophytic fungi were identified by molecular analysis of the internal transcribed region (ITS) of the ribosomal DNA. Isolation of antibacterial compounds using chromatographic techniques and determination of chemical structures using spectroscopy was performed. Eight endophytic fungi were obtained from the stem bark of S. jambos, namely SJ1–SJ8. The endophytic fungus SJ6 showed the highest activity and base on phylogenetic analysis, was identified as Fusarium verticillioides. Pure compounds isolated as yellowish-white solids showed good antibacterial activity against S. aureus and S. typhi with minimum inhibitory concentration values of 64 g/mL each. Based on 1D and 2D nuclear magnetic resonance spectroscopic analysis, compound 1 was identified as 3-hydroxy-4-(hydroxy(4-hydroxyphenyl)methyl)dihydrofuran-2-on.

##plugins.themes.bootstrap3.article.details##

References
Abdel-Azeem, A. M., Abdel-Azeem, M. A., & Khalil, W. F. (2019). Endophytic Fungi as a New Source of Antirheumatoid Metabolites. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases (pp. 355–384). Elsevier. https://doi.org/10.1016/B978-0-12-813820-5.00021-0
Álvarez, E., Llano, G. A., Loke, J. B., & Chacon, M. I. (2012). Characterization of Thielaviopsis paradoxa Isolates from Oil Palms in Colombia, Ecuador and Brazil. Journal of Phytopathology, 160(11–12), 690–700. https://doi.org/10.1111/jph.12012
Athikomkulchai, S., Lipipun, V., Leelawittayanont, T., Khanboon, A., & Ruangrungsi, N. (2008). Anti-Herpes Simplex Virus Activity of Syzygium jambos. Journal of Health Research, 22(1), 49–51.
Baliga, M. S., Pai, K. S. R., Saldanha, E., Ratnu, V. S., Priya, R., Adnan, M., & Naik, T. S. (2017). Rose Apple (Syzygium jambos (L.) Alston). Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition, 2, 1235–1241. https://doi.org/10.1002/9781119158042.ch65
Begum, M. M., Haque, M., Reyad-ul-Ferdous, M., Hasan, M., Tarek, H., Noor-A-Alam, M., Hossain, M. B., Uddin, M. N., Begum, T., & Hasan, C. M. (2015). Screening of Antioxidant and Antimicrobial Properties of the Syzygium jambos L. American Journal of BioScience, 3(2–1), 23–26. https://doi.org/10.11648/j.ajbio.s.2015030201.15
Bonfanti, G., Bitencourt, P., Bona, K., Silva, P., Jantsch, L., Pigatto, A., Boligon, A., Athayde, M., Gonçalves, T., & Moretto, M. (2013). Syzygium jambos and Solanum guaraniticum Show Similar Antioxidant Properties but Induce Different Enzymatic Activities in the Brain of Rats. Molecules, 18(8), 9179–9194. https://doi.org/10.3390/molecules18089179
Bonfanti, G., De Bona, K. S., de Lucca, L., Jantsch, L., Pigatto, A. S., Boligon, A. A., Athayde, M. L., Moretto, M. B., & Gonçalves, T. de L. (2014). Delta-ALA-D inhibitory potential and protective action of Syzygium jambos and Solanum guaraniticum leaf extracts on oxidatively stressed erythrocytes. Redox Report, 19(5), 206–213. https://doi.org/10.1179/1351000214Y.0000000092
Budiono, Elfita, Muharni, Yohandini, H., & Widjajanti, H. (2019). Antioxidant Activity of Syzygium samarangense L. and Their Endophytic Fungi. Molekul, 14(1), 48–55. https://doi.org/10.20884/1.jm.2019.14.1.503
Cole, G. T. (1974). Conidiophore and Conidium Ontogeny in Spegazzinia tessarthra. Canadian Journal of Botany, 52(6), 1259–1264. https://doi.org/10.1139/b74-163
Devakumar, J., & Sudha, S. S. (2017). In vitro Phytochemical , Antioxidant and Cytotoxic Evaluation of Syzygium jambos L . ( Alston ). Journal of Pharmacy Research, 11(3), 235–238.
Ding, Z., Tao, T., Wang, L., Zhao, Y., Huang, H., Zhang, D., Liu, M., Wang, Z., & Han, J. (2019). Bioprospecting of Novel and Bioactive Metabolites from Endophytic Fungi Isolated from Rubber Tree Ficus elastica Leavess. Journal of Microbiology and Biotechnology, 29(5), 731–738. https://doi.org/10.4014/jmb.1901.01015
Elfita, Mardiyanto, Fitrya, Eka Larasati, J., Julinar, Widjajanti, H., & Muharni. (2019). Antibacterial Activity of Cordyline Fruticosa Leaf Extracts and Its Endophytic Fungi Extracts. Biodiversitas, 20(12), 3804–3812. https://doi.org/10.13057/biodiv/d201245
Fors, R. O., Patreze, C. M., Berbara, R. L. L., Carneiro, M. A. C., & Saggin, O. J. (2020). Dark Septate Endophytic Fungi Associated with Sugarcane Plants Cultivated in Sao Paulo, Brazil. Diversity, 12(9), 1–21. https://doi.org/10.3390/D12090351
Ghareeb, M. A., Saad, A. M., Abdel-Aleem, A. A. H., Abdel-Aziz, M. S., Hamed, M. M., & Hadad, A. H. (2016). Antioxidant, Antimicrobial, Cytotoxic Activities and Biosynthesis of Silver and Gold Nanoparticles Using Syzygium jambos Leaves Growing in Egypt. Der Pharma Chemica, 8(18), 107–116.
Habisukan, U. H., Elfita, Widjajanti, H., Setiawan, A., & Kurniawati, A. R. (2021). Diversity of Endophytic Fungi in Syzygium aqueum. Biodiversitas, 22(3), 1129–1137. https://doi.org/10.13057/biodiv/d220307
Hanin, N. A., & Fitriasari, P. D. (2019). Identification of Endophytic Fungi from Fruits and Seeds of Jambolana (Syzygium cumini L.) Skeels. IOP Conference Series: Earth and Environmental Science, 276(1). https://doi.org/10.1088/1755-1315/276/1/012060
Haque, M., Begum, M. M., Hasan, M., Rahman, A. F. M. T., Hussain, M. I., Rahman, M. M., Ali, M. H., Islam, M. A., Sultan, M. Z., Reyad-ul-Ferdous, M., & Hasan, C. M. (2015). Investigation of the Medicinal Potentials of Syzygium jambos (L.) Extract and Characterization of the Isolated Compounds. American Journal of BioScience, 3(2), 12–18. https://doi.org/10.11648/j.ajbio.s.2015030201.13
Katagiri, K., Sato, K., Hayakawa, S., Matsushima, T., & Minato, H. (1970). Verticillin A, s New Antibiotic from Verticillium sp. The Journal of Antibiotic, 420–422.
Lim, T. K. (2012). Syzygium jambos. In Edible Medicinal And Non Medicinal Plants (pp. 760–766). Springer Netherlands. https://doi.org/10.1007/978-94-007-2534-8_101
Luo, Z. L., Bahkali, A. H., Liu, X. Y., Phookamsak, R., Zhao, Y. C., Zhou, D. Q., Su, H. Y., & Hyde, K. D. (2016). Poaceascoma aquaticum sp. nov. (Lentitheciaceae), a New Species from Submerged Bamboo in Freshwater. Phytotaxa, 253(1), 71–80. https://doi.org/10.11646/phytotaxa.253.1.5
Majumdar, N., & Mandal, N. C. (2018). Growth and Sporulation Physiology of Postharvest Pathogen Thielaviopsis paradoxa (De Seynes.) Höhn. International Journal of Current Microbiology and Applied Sciences, 7(7), 537–544. https://doi.org/10.20546/ijcmas.2018.707.066
Marsberg, A., Slippers, B., Wingfield, M. J., & Gryzenhout, M. (2014). Endophyte isolations from Syzygium cordatum and a Eucalyptus clone (Myrtaceae) Reveal New Host and Geographical Reports For The Mycosphaerellaceae and Teratosphaeriaceae. Australasian Plant Pathology, 43(5), 503–512. https://doi.org/10.1007/s13313-014-0290-y
Martinez-Klimova, E., Rodríguez-Peña, K., & Sánchez, S. (2017). Endophytes as Sources of Antibiotics. In Biochemical Pharmacology (Vol. 134, pp. 1–17). Elsevier Inc. https://doi.org/10.1016/j.bcp.2016.10.010
Mekawey, A. A. I. (2010). The Antibiotic Properties of Several Strains of Fungi. Australian Journal of Basic and Applied Sciences, 4(8), 3441–3454.
Mena-Portales, J., Cantillo-Pérez, T., & Minter, D. W. (2017). A New Species of the Conidial Fungal Genus Spegazzinia (Pleosporales, Didymosphaeriaceae) Collected on Sugarcane in Cuba. Phytotaxa, 331(2), 295–298. https://doi.org/10.11646/phytotaxa.331.2.14
Minato, H., Matsumoto, M., & Katayama, T. (1971). Verticillin A, a New Antibiotic from Verticillium sp. Chemical Communication, 44–45.
Mohanty, S., & Cock, I. E. (2010). Bioactivity of Syzygium jambos methanolic extracts: Antibacterial activity and toxicity. Pharmacognosy Research, 2(1), 4–9. https://doi.org/10.4103/0974-8490.60577
Morton, J. F. (1987). Rose Apple. In Fruits of Warm Climates (pp. 383–386).
Murugan, S., Devi, P. U., Kannika Parameswari, N., & Mani, K. R. (2011). Antimicrobial Activity of Syzygium jambos Against Selected Human Pathogens. International Journal of Pharmacy and Pharmaceutical Sciences, 3(2), 44–47. https://innovareacademics.in/journal/ijpps/Vol3Issue2/1058.pdf
Niu, X. (2017). Perspectives in Sustainable Nematode Management Through Pochonia chlamydosporia Applications for Root and Rhizosphere Health: Secondary Metabolites from Pochonia chlamydosporia and Other Species of Pochonia. In Sustainability in Plant and Crop Protection. https://doi.org/10.1007/978-3-319-59224-4
Nurhaida, Yenn, T. W., & Ibrahim, D. (2019). Endophytic fungi from Syzygium cumini (L.) Skeels leaves and its potential as antimicrobial agents. IOP Conference Series: Earth and Environmental Science, 364(1). https://doi.org/10.1088/1755-1315/364/1/012023
Peng, W., You, F., Li, X. L., Jia, M., Zheng, C. J., Han, T., & Qin, L. P. (2013). A New Diphenyl Ether from the Endophytic Fungus Verticillium sp. Isolated from Rehmannia glutinosa. Chinese Journal of Natural Medicines, 11(6), 673–675. https://doi.org/10.1016/S1875-5364(13)60078-3
Phookamsak, R., Manamgoda, D. S., Li, W. J., Dai, D. Q., Singtripop, C., & Hyde, K. D. (2015). Poaceascoma Helicoides Gen et sp. nov., a New Genus with Scolecospores in Lentitheciaceae. Cryptogamie, Mycologie, 36(2), 225–236. https://doi.org/10.7872/crym/v36.iss2.2015.225
Rajkumari, J., Borkotoky, S., Murali, A., & Busi, S. (2018). Anti-quorum sensing activity of Syzygium jambos (L.) Alston against Pseudomonas aeruginosa PAO1 and identification of its bioactive components. South African Journal of Botany, 118, 151–157. https://doi.org/10.1016/j.sajb.2018.07.004
Roux, J., Nkuekam, G. K., Marincowitz, S., van der Merwe, N. A., Uchida, J., Wingfield, M. J., & Chen, S. F. (2020). Cryphonectriaceae Associated with Rust-Infected Syzygium Jambos in Hawaii. MycoKeys, 76, 49–79. https://doi.org/10.3897/MYCOKEYS.76.58406
Selim, K. A., El-Beih, A. A., Abdel-Rahman, T. M., & El-Diwany, A. I. (2012). Biology of Endophytic Fungi. Current Research in Environmental & Applied Mycology, 2(1), 31–82. https://doi.org/10.5943/cream/2/1/3
Sharma, R., Gräser, Y., & Singh, S. K. (2013). Auxarthronopsis, a New Genus of Onygenales Isolated from The Vicinity of Bandhavgarh National Park, India. IMA Fungus, 4(1), 89–102. https://doi.org/10.5598/imafungus.2013.04.01.09
Sharma, R., Kishore, N., Hussein, A., & Lall, N. (2013). Antibacterial and Anti-Inflammatory Effects of Syzygium jambos L. (Alston) and Isolated Compounds on Acne vulgaris. BMC Complementary and Alternative Medicine, 13(292), 1–10. https://doi.org/10.1186/1472-6882-13-292
Sivanesan, A. (1983). Studies on Ascomycetes. Transactions of the British Mycological Society, 81(2), 313–332. https://doi.org/10.1016/s0007-1536(83)80084-9
Sobeh, M., Esmat, A., Petruk, G., Abdelfattah, M. A. O., Dmirieh, M., Monti, D. M., Abdel-Naim, A. B., & Wink, M. (2018). Phenolic Compounds from Syzygium jambos (Myrtaceae) Exhibit Distinct Antioxidant and Hepatoprotective Activities in vivo. Journal of Functional Foods, 41, 223–231. https://doi.org/10.1016/j.jff.2017.12.055
Sudha, V., Govindaraj, R., Baskar, K., Al-Dhabi, A., & Duraipandiyan, V. (2016). Biological Properties of Endophytic Fungi. Brazilian Archives of Biology and Technology, 59, 16150436. https://doi.org/10.1590/1678-4324-2016150436
Varsavsky, E., & Orr, G. F. (1971). A New Genus of the Gymnoascaceae. Mycopathologia et Mycologia Applicata, 43(2), 229–234.
Wamba, B. E. N., Nayim, P., Mbaveng, A. T., Voukeng, I. K., Dzotam, J. K., Ngalani, O. J. T., & Kuete, V. (2018). Syzygium jambos Displayed Antibacterial and Antibiotic-Modulating Activities against Resistant Phenotypes. Evidence-Based Complementary and Alternative Medicine, 2018. https://doi.org/10.1155/2018/5124735
Wang, M., Liu, F., Crous, P. W., & Cai, L. (2017). Phylogenetic Reassessment of Nigrospora: Ubiquitous Endophytes, Plant and Human Pathogens. Persoonia: Molecular Phylogeny and Evolution of Fungi, 39(December), 118–142. https://doi.org/10.3767/persoonia.2017.39.06
Watanabe, T. (2010). Pictorial Atlas of Soil and Seed Fungi: Morfologies of Cultural Fungi and Key to Species. In Pictorial Atlas of Soil and Seed Fungi (Third Edit). CRC Press: Taylor & Francis Group. https://doi.org/10.1201/ebk1439804193
Watanabe, T., Watanabe, Y., & Fukatsu, T. (2001). New species of Acremonium, Cylindrocarpon and Verticillium from soil in the Bonin (Ogasawara) Islands, Japan. Mycoscience, 42(6), 591–595. https://doi.org/10.1007/BF02460958
Yadav, R. N., Mahtab Rashid, M., Zaidi, N. W., Kumar, R., & Singh, H. B. (2019). Secondary Metabolites of Metarhizium spp. and Verticillium spp. and Their Agricultural Applications. In Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications. https://doi.org/10.1007/978-981-13-5862-3_2
Zhang, Z. F., Zhou, X., Liu, F., Cai, L., Liu, S. J., & Liu, X. Z. (2017). Culturable Mycobiota from Karst Caves in China II, with Descriptions of 20 New Species. Persoonia: Molecular Phylogeny and Evolution of Fungi, 39(1), 1–31. https://doi.org/10.1007/s13225-020-00453-7

Most read articles by the same author(s)

1 2 > >>