Phytoremediation of iron in ex-sand mining waters by water hyacinth (Eichhornia crassipes)




Hasani Q, Pratiwi NTM, Wardiatno Y, Effendi H, Martin AN, Efendi E, Pirdaus P. 2020. Phytoremediation of Iron (Fe) in Ex-sand Mining Waters by Water Hyacinth (Eichhornia crassipes (Mart.) Solms). The high concentration of iron (Fe) has allegedly caused the water quality of puddles at sand mining area. The poor water quality, in which high contentrations of iron will to a reduction in aquaculture production. This study verified the ability of water hyacinths (Eichhornia crassipes (Mart.) Solms.)) as a phytoremediation agent for iron (Fe) concentration in water at the sand mining area, in East Lampung Regency, Indonesia. The study was carried out with 3 treatments and 3 replication each, including the treatment of (i) 25% water surface coverage, (ii) 50% water surface coverage, and (iii) 75% water surface coverage of water hyacinth. Measurement of Fe concentrations, bioconcentration factor (BCF) and translocation factor (TF) once a week, until Fe concentrations in water are adequate for aquaculture. This was achieved for 21 days. The results showed that the highest percentage reduction of Fe (97.49%) was observed at water hyacinth cover area 50%. The highest value of BCF was 2385.51, while the highest TF was 1.14 in stems and 1.02 in leaves. The results of this study open up opportunities for use water in ex-sand mining areas for aquaculture by the community and its management by the Government of East Lampung Regency, Lampung, Indonesia.


Ajayi TO, Ogunbayio AO. 2012. Achieving Environmental Sustainability in Wastewater Treatment by Phytoremediation with Water Hyacinth (Eichhornia Crassipes). Journal of Sustainable Development 5(7):p.80–90.
Ajibade FO, Adeniran KA, Egbuna CK. 2013. Phytoremediation Efficiencies of Water Hyacinth in Removing Heavy Metals in Domestic Sewage ( A Case Study of University of Ilorin, Nigeria). International Journal of Engineering and Science (THEIJES) 2(12):p.16–27.
Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-Concepts and applications. Chemosphere 91(7):p.869–881.
Annisa W, Subagio H. 2016. Profile Analysis of the Effects of Organic Matter on Iron Concentration and Absorption in Tidal Swamp Land. Infoematika Pertanian 25(2):p.241–248.
APHA. 2012. Standard method for the examination of water and wastewater. 21st ed. 21st ed., Washington DC: American Public Health Association.
Arnot JA, Gobas FAPC. 2006. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews 14(4):p.257–297.
Asabonga M, Cecilia B, Mpundu MC, Vincent NMD. 2017. The physical and environmental impacts of sand mining. Transactions of the Royal Society of South Africa 72(1):p.1–5.
Atejioye AA, Odeyemi CA. 2018. Analysing Impact of Sand Mining in Ekiti State, Nigeria Using GIS for Sustainable Development. World Journal of Research and Review 6(2):p.26–31.
Bishnoi NR, Garima A. 2005. Fungus - An alternative for bioremediation of heavy metal containing wastewater: A review. Journal of Scientific and Industrial Research 64(2):p.93–100.
Crawford NM, Glass ADM. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science 3(10):p.389–395.
Darmayanti NCE, Manaf A, Briyatmoko B. 2000. Identifikasi Kandungan Senyawa Kimia pada Pasir Mineral. In Prosiding Seminar Nasional Bahan Magnet I. Serpong, pp. 40–43.
Deval CG, Mane A V., Joshi NP, Saratale GD. 2012. Phytoremediation potential of aquatic macrophyte Azolla caroliniana with references to zinc plating effluent. Emirates Journal of Food and Agriculture 24(3):p.208–223.
Djo YHW, Suastuti DA, Suprihatin IE, Sulihingtyas WD. 2017. Fitoremediasi Menggunakan Tanaman Eceng Gondok (Eichhornia crassipes) Untuk Menurunkan COD dan Kandungan Cu dan Cr Limbah Cair Laboratorium Analitik Universitas Udayana. Cakra Kimia (Indonesian E-Journal of Applied Chemistry) 6(2):p.137–144.
Elboughdiri N. 2020. The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater. Cogent Engineering 7(1).
Elisa PS, Sasmita A, Edward H. 2016. Pengaruh Campuran Lempung dan Eceng Gondok sebagai Adsorben untuk Penyisihan Besi (Fe), Mangan (Mn) dan Warna pada Air Gambut. Jom FTeknik 4(1):p.1–8.
Elumalai S, Somasundaram K, Ramganesh S, Sakthivel K. 2011. Phytoremediation of metals by aquatic plants at natural wetlands in major lakes ( industrial city ) Hosur , Krishnagiri district , India. Applied Botany 30A:p.1876–1881.
Erdem E, Karapinar N, Donat R. 2004. The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science 280(2):p.309–314.
España JS. 2008. Acid Mine Drainage in the Iberian Pyrite Belt?: an Overview with Special Emphasis on Generation Mechanisms , Aqueous Composition and Associated Mineral Phases. Revista de la sociedad española de mineralogía 10:p.34–43.
Gavriletea MD. 2017. Environmental impacts of sand exploitation. Analysis of sand market. Sustainability (Switzerland) 9(7).
Ghosh M, Singh S. 2005. A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution 133(2):p.365–371.
Glass ADM. 2009. Nitrate uptake by plant roots. Botany 87(7):p.659–667.
Gonzalez NA, Guo L. 2018. The Potential of Lemna minor to Uptake Iron in Water. Journal of Environmental Science and Engineering A 7(7):p.268–273.
Guo H, Weber RJ, Nenes A. 2017. High levels of ammonia do not raise fine particle pH sufficiently to yield nitrogen oxide-dominated sulfate production. Scientific Reports 7(1):p.1–7.
Hasani Q, Pratiwi NT, Effendi H, Wardiatno Y, Raja Guk Guk J, Maharani HW, Rahman M. 2021. Azolla Pinnata as Phytoremediation Agent of Iron (Fe) in Ex Sand Mining Waters. Chiang Mai University Journal of Natural Sciences 20(1):p.e2021017.
Hasibuan PM. 2006. Dampak Penambangan Bahan Galian Golongan C Terhadap Lingkungan Sekitarnya Di Kabupaten Deli Serdang. Jurnal Equality 11(1):p.19–23.
Ili? DS, Dimki? IZ, Waisi HK, Gkorezis PM, Hamidovi? SR, Rai?evi? VB, Lalevi? BT. 2019. Reduction of hexavalent chromium by Bacillus spp. isolated from heavy metal-polluted soil. Chemical Industry and Chemical Engineering Quarterly 25(3):p.247–258.
Junior ABB, Vicente ADA, Espinosa DCR, Tenório JAS. 2019. Recovery of metals by ion exchange process using chelating resin and sodium dithionite. Journal of Materials Research and Technology 8(5):p.4464–4469.
Keller M. 2004. Iron Removal by Ion Exchange: Standing on solid ground. Water Conditioning & Purification:p.20–23.
Khatri N, Tyagi S, Rawtani D. 2017. Recent strategies for the removal of iron from water: A review. Journal of Water Process Engineering 19(13):p.291–304.
Khulbe KC, Matsuura T. 2018. Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science 8(1):p.1–30.
Kord B, Mataji A, Babaie S. 2010. Pine (Pinus Eldarica Medw.) needles as indicator for heavy metals pollution. International Journal of Environmental Science and Technology 7(1):p.79–84.
Kumar NR, McCullough CD, Lund M a. 2011. Potential of sewage and green waste for acidic pit lake bioremediation. International Mine Water Association:p.381–386.
Kumar V, Kumar Pankaj, Kumar Piyush, Singh J. 2020. Anaerobic digestion of Azolla pinnata biomass grown in integrated industrial effluent for enhanced biogas production and COD reduction: Optimization and kinetics studies. Environmental Technology and Innovation 17:p.100627.
Kumar V, Kumar Piyush, Singh J, Kumar Pankaj. 2019. Potential of water fern (Azolla pinnata R.Br.) in phytoremediation of integrated industrial effluent of SIIDCUL, Haridwar, India: removal of physicochemical and heavy metal pollutants. International Journal of Phytoremediation 22(4):p.392–403.
Kurniawan A, Surono W. 2013. Model of Environmentally Sound Small-Scale Mining Reclamation?: A Case Study of Pumice Mining Reclamation Area at Ijobalit East Lombok Regency West Nusa Tenggara Province. 9(April):p.165–174.
Lestari S, Santoso S, Anggorowati S. 2011. Efektivitas Eceng Gondok (Eichhornia crassipes) dalam penyerapan Kadmium (Cd) pada Leachate TPA Gunung Tugel. Molekul 6(1):p.25–29.
Maddah HA, Alzhrani AS, Bassyouni M, Abdel-Aziz MH, Zoromba M, Almalki AM. 2018. Evaluation of various membrane filtration modules for the treatment of seawater. Applied Water Science 8(6):p.1–13.
Manning TJ, Grow WR. 2019. Atomic emission spectrometry | inductively coupled plasma. Encyclopedia of Analytical Science 2(1):p.169–176.
Marini, Baja S, Sultan I. 2014. Penerimaan informasi dampak penambangan pasir bagi kerusakan lingkungan hidup di kalangan penambang pasir ilegal di das jeneberang kabupaten gowa. Jurnal Komunikasi KAREBA 3(2):p.112–118.
Mellem JJ, Baijnath H, Odhav B. 2012. Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. African Journal of Agricultural Reseearch 7(4):p.591–596.
Mngeni A, Musampa CM, Nakin MD V. 2016. The effects of sand mining on rural communities. Sustainable Development and Planning VIII 1(April):p.443–453.
Mustofa A. 2015. Kandungan nitrat dan pospat sebagai faktor tingkat kesuburan perairan pantai. Disprotek 6(1):p.13–19.
Mutmainnah F, Arinafril, Suheryanto. 2015. (Phytoremediation Heavy Metals Lead (Pb) using Hydrilla verticillata and Najas indica. Sciences Research Journal 17(3):p.111–120.
Ndimele P., Jimoh A. 2011. Water Hyacinth (Eichhornia crassipes (Mart.) Solms.) in Phytoremediation of Heavy Metal Polluted Water of Ologe Lagoon, Lagos, Nigeria. Research Journal of Environmental Sciences 5(5):p.424–433.
Neina D. 2019. The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science 2019(3):p.1–9.
Octorina P, Novita M, Kustiawan B, Nurbaeti N. 2017. Potensi Situ Bekas Galian Pasir untuk Usaha Perikanan Sistem Culture Based Fisheries (CBF) dan Keramba Jaring Apung (KJA). Limnotek 24(1):p.44–51.
Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC, Maboeta MS. 2018. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology 49(1):p.29–37.
Purwaningsih IS. 2012. Pengaruh Penambahan Nutrisi Terhadap Efektifitas Fitoremediasi Menggunakan Tanaman Enceng Gondok (Eichhornia crassipes) Terhadap Limbah Orto-Klorofenol. Jurnal Rekayasa Proses 3(1):p.5–9.
Putra RS, Hastika FY. 2018. Removal of heavy metals from leachate using electro-assisted phytoremediation (EAPR) and up-take by water hyacinth (eichornia crassipes). Indonesian Journal of Chemistry 18(2):p.306–312.
Ramadan TM, Abdelsalam MG, Stern RJ. 2001. Mapping gold-bearing massive sulfide deposits in the neoproterozoic allaqi suture, southeast egypt with landsat TM and SIR-C/X SAR images. Photogrammetric Engineering and Remote Sensing 67(4):p.491–497.
Rezania S, Din MFM, Taib SM, Dahalan FA, Songip AR, Singh L, Kamyab H. 2016. The efficient role of aquatic plant (water hyacinth) in treating domestic wastewater in continuous system. International Journal of Phytoremediation 18(7):p.679–685.
Romiyanto R, Barus B, Sudadi U. 2015. Model Spasial Kerusakan Lahan Dan Pencemaran Air Akibat Kegiatan Pertambangan Emas Tanpa Izin Di Daerah Aliran Sungai Raya, Kalimantan Barat. Jurnal Ilmu Tanah dan Lingkungan 17(2):p.47.
Rondonuwu SB. 2014. Fitoremediasi Limbah Merkuri Menggunakan Tanaman Dan Sistem Reaktor. Jurnal Ilmiah Sains 14(1):p.52.
Runtti H, Tolonen ET, Tuomikoski S, Luukkonen T, Lassi U. 2018. How to tackle the stringent sulfate removal requirements in mine water treatment—A review of potential methods. Environmental Research 167:p.207–222.
Santoso S, Lestari S, Anggorowati S. 1999. Water Hyacinth Efficiency in Organic Matter Removal of Leachate of Gunung Tugel Final Disposal Site, Purwokerto. Jurnal Purifikasi 11(2):p.163–170.
Schumann R, Robertson A, Gerson A, Fan R. 2015. Iron Sulfides Ain ’ t Iron Sulfides . A Comparison of Acidity Generated During Oxidation of Pyrite and Pyrrhotite in Waste Rock and Tailing Materials. 10th International Conference on Acid Rock Drainage & IMWA Annual Conference:p.1–11.
Shaheen SM, Derbalah AS, Moghanm FS. 2012. Removal of Heavy Metals from Aqueous Solution by Zeolite in Competitive Sorption System. International Journal of Environmental Science and Development (May 2014):p.362–367.
Shawai SAA, Muktar HI, Bataiya AG, Abdullahi II, Shamsuddin IM, Yahaya AS. 2017. A Review on Heavy Metals Contamination in Water and Soil: Effects, Sources and Phytoremediation Techniques. International Journal of Mineral Processing and Extractive Metallurgy 2(2):p.21–27.
Shingadgaon SS, Chavan BL. 2019. Evaluation of Bioaccumulation Factor ( BAF ), Bioconcentration Factor ( BCF ), Translocation Factor ( TF ) and Metal Enrichment Factor ( MEF ) Abilities of Aquatic Macrophyte Species Exposed to Metal Contaminated Wastewater. Internatonal Journal of Innovative Research in Science, Engineering and Technology 8(1):p.329–347.
Sidek NM, Abdullah SRS, Ahmad N ‘Uyun, Draman SFS, Rosli MMM, Fahmey S. 2018. Abandoned Mining Lake by Water Hyacinth and Water Lettuces in Constucted Wetlands. Jurnal Teknologi 5(8):p.87–93.
Singh R, Gupta MK. 2019. Assessment of Cr (VI) resistant bacterial diversity and characterization of potent chromium reducers from Gwalior, India. International Journal of Scientific and Technology Research 8(9):p.2286–2292.
Siswanto B, Krisnayanti BD, Utomo WH, Anderson CWN. 2012. Rehabilitation of Artisanal Mining Gold Land in West Lombok, Indonesia: 2. Arbuscular Mycorrhiza Status of Tailings and Surrounding Soils. Journal of Geology and Mining Research 4(1):p.1–7.
Syauqiah I, Amalia M, Kartini HA. 2011. Analisis Variasi Waktu Dan Kecepatan Pengaduk Pada Proses Adsorpsi Limbah Logam Berat Dengan Arang Aktif. Info Teknik 12(1):p.11–20.
Testi EH, Soenardjo N, Pramesti R. 2019. Logam Pb pada Avicennia marina Forssk , 1844 ( Angiosperms?: Acanthaceae ) di Lingkungan Air , Sedimen , di Pesisir Timur Semarang. Journal of Marine Research 8(2):p.211–217.
Tsanaktsidou E, Zachariadis G. 2020. Titanium and chromium determination in feedstuffs using ICP-AES technique. Separations 7(1):p.3–11.
Usman K, Al-Ghouti MA, Abu-Dieyeh MH. 2019. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Scientific Reports 9(1):p.1–11.
Velitchkova N, Veleva O, Velichkov S, Daskalova N. 2013. Possibilities of high resolution inductively coupled plasma optical emission spectrometry in the determination of trace elements in environmental materials. Journal of Spectroscopy 1(1).
Wijaya DS, Hidayat T, Sumiarsa D, Kurnaeni TB, Kurniadi D. 2016. A Review On Sub-Surface Flow Constructed Wetlands In Tropical And Sub-Tropical Countries. Open Science Journal 1(2):p.1–11.
Wurts WA. 2003. Daily pH cycle and ammonia toxicity. World Aquaculture 34(2):p.20–21.
Yudhistira, Hidayat WK, Hadiyarto A. 2011. Kajian Dampak Kerusakan Lingkungan Akibat Kegiatan Penambangan. Jurnal Ilmu Lingkungan 9(2):p.76–84.
Yunus R, Prihatini NS. 2018. Fitoremediasi Fe dan Mn Air Asam Tambang Batubara dengan Eceng Gondok (Eichornia crassipes) dan Purun Tikus (Eleocharis dulcis) pada Sistem LBB di PT. JBG Kalimantan Selatan. Sainsmat?: Jurnal Ilmiah Ilmu Pengetahuan Alam 7(1):p.73–85.
Zhou C, Zhou Y, Rittmann BE. 2017. Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization. Water Research 119:p.91–101.

Most read articles by the same author(s)

1 2 > >>