Proteomic approach: Identification of Nephotettix virescens vector protein transmitting the tungro virus in rice

##plugins.themes.bootstrap3.article.main##

WASIS SENOAJI
https://orcid.org/0000-0001-8473-8886
Bambang Tri
https://orcid.org/0000-0002-5185-5899
Hagus Tarno
https://orcid.org/0000-0003-0997-5843

Abstract

Abstract. Senoaji W, Rahardjo BT, Tarno H. 2021. Proteomic approach: Identification of Nephotettix virescens vector protein transmitting the tungro virus in rice. Biodiversitas 22: 2750-2755. As a vector of tungro virus, Nephotettix virescens is one primary pest in rice cultivars. Associated Rice Tungro Spherical Virus provides a helper component for Rice Tungro Bacilliform Virus acquisition produced the severe symptoms in rice. The vector proteins encoded by the virus become a poorly understood transmission of plant viruses, particularly in semi-persistent mechanisms. It is essential to develop new molecules to interrupt the transmission mechanism of plant viruses by insect vectors. This study aimed to detect the helper proteins in vectors with proteomics. Protein separation was performed using SDS-PAGE, and then was identified by the Liquid Chromatography-Mass Spectrometry (LC-MS/MS) to find the candidate proteins. The result showed that actin was identified in N. virescens as responsible protein that related to transmitting tungro viruses into the plant.

##plugins.themes.bootstrap3.article.details##

References
Bensimon A, Heck AJR, Aebersold R. 2012. Mass spectrometry-based proteomics and network biology. Annual Review of Biochemistry 81: 379–405. DOI: 10.1146/annurev-biochem-072909-100424.
Campostrini N, Areces LB, Rappsilber J, Pietrogrande MC, Dondi F, Pastorino, F, Ponzoni M, Righetti PG. 2005. Spot overlapping in two-dimensional maps: A serious problem ignored for much too long. In Proteomics 5(9): 2385–2395. DOI: 10.1002/pmic.200401253.
Chen H, Chen Q, Omura T, Uehara-Ichiki T, Wei T. 2011. Sequential infection of Rice dwarf virus in the internal organs of its insect vector after ingestion of virus. Virus Research 160 (1–2): 389–394. DOI: 10.1016/j.virusres.2011.04.028.
Chen Q, Wang H, Ren T, Xie L, Wei T. 2015. Interaction between non-structural protein Pns10 of rice dwarf virus and cytoplasmic actin of leafhoppers is correlated with insect vector specificity. Journal of General Virology 96(4): 933–938. DOI: 10.1099/jgv.0.000022.
Das S, Ge P, Oztug-Durer ZA, Grintsevich EE, Zhou ZH, Reisler E. 2020. D-loop Dynamics and Near-Atomic-Resolution Cryo-EM Structure of Phalloidin-Bound F-Actin. Structure 28(5): 586-593. DOI: 10.1016/j.str.2020.04.004.
Davidson PM, Cadot B. 2020. Actin on and around the Nucleus. Trends in Cell Biology xx(xx):1–13. DOI: 10.1016/j.tcb.2020.11.009
Deshoux M, Masson V, Arafah K, Voisin S, Guschinskaya N, Van Munster M, Cayrol, B, Webster CG, Rahbé Y, Blanc S, Bulet P, Uzest M. 2020. Cuticular Structure Proteomics in the Pea Aphid Acyrthosiphon pisum Reveals New Plant Virus Receptor Candidates at the Tip of Maxillary Stylets. Journal of Proteome Research 19(3): 1319–1337. DOI: 10.1021/acs.jproteome.9b00851.
Doyle JJ, Doyle JL. 1990. A rapid total DNA preparation procedure for fresh plant tissue. In Focus 12(1): 13–15).
Fereres A, Raccah B. 2015. Plant Virus Transmission by Insects. In eLS : 1–12. DOI: 10.1002/9780470015902.a0000760.pub3.
Froissart R, Michalakis Y, Blanc S. 2002. Helper component-transcomplementation in the vector transmission of plant viruses. Phytopathology 92(6): 576–579. DOI: 10.1094/PHYTO.2002.92.6.576.
Furukawa R, Fechheimer M. 1997. The structure, function, and assembly of actin filament bundles. International Review of Cytology 175: 29–90. DOI: 10.1016/s0074-7696(08)62125-7.
Guo B, Lin J, Ye K. 2011. Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase. Journal of Biological Chemistry 286(24): 21937–21943. DOI: 10.1074/jbc.M111.230706.
Hattori M, Komatsu S, Noda H, Matsumoto Y. 2015. Proteome analysis of watery saliva secreted by green rice leafhopper, Nephotettix cincticeps. PLoS ONE 10(4): 1–19. DOI; 10.1371/journal.pone.0123671.
Hibino H. 1996. Biology and Epidemiology of Rice Viruses. Annual Review of Phytopathology 34: 249–274.
Hibino H, Saleh N, Roechan M. 1979. Transmission of Two Kinds of Rice Tungro-Associated Viruses by Insect Vectors. In Phytopathology 69: 1266-1268.
Holzmüller W, Kulozik U. 2016. Protein quantification by means of a stain-free SDS-PAGE technology without the need for analytical standards: Verification and validation of the method. Journal of Food Composition and Analysis 48: 128–134. DOI: 10.1016/j.jfca.2016.03.003.
Huang HJ, Lu JB, Li Q, Bao YY, Zhang CX. 2018. Combined transcriptomic/proteomic analysis of salivary gland and secreted saliva in three planthopper species. Journal of Proteomics 172: 25–35. DOI: 10.1016/j.jprot.2017.11.003.
IRRI. 2013. Standard Evaluation System for Rice. International Rice Research Instiitute. DOI: 10.1063/1.1522164.
Kelber JA, Klemke RL. 2011. The Actin Cytoskeleton. In Cellular Domains. DOI: 10.1002/9781118015759.ch12.
Kellie JF, Tran JC, Lee JE, Ahlf DR, Thomas HM, Ntai I, Catherman AD, Durbin KR, Zamdborg L, Vellaichamy A, Thomas PM, Kelleher NL. 2010. The emerging process of Top Down mass spectrometry for protein analysis: Biomarkers, protein-therapeutics, and achieving high throughput. Molecular BioSystems 6(9): 1532–1539. DOI: 10.1039/c000896f.
Khan ZR, Saxena RC. 1985. Behavior and Biology of Nephotettix virescens (Homoptera: Cicadellidae) on Tungro Virus-infected Rice Plants: Epidemiology Implications. Environmental Entomology 14(6): 297–304. DOI: 10.1093/ee/14.3.297.
Kyheröinen S, Vartiainen MK. 2020. Nuclear actin dynamics in gene expression and genome organization. Seminars in Cell and Developmental Biology 102: 105–112. DOI: 10.1016/j.semcdb.2019.10.012.
Ladja FT, Hidayat SH, Damayanti TA, Rauf A. 2016. Rice Tungro Virus Detection on Weeds using PCR Techniques. Penelitian Pertanian Tanaman Pangan 35(1): 39–44. DOI: 10.21082/jpptp.v35n1.2016.p39-44.
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. DOI: 10.1038/227680a0.
Li AQ, Popova-Butler A, Dean DH, Denlinger DL. 2007. Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause. Journal of Insect Physiology 53(4): 385–391. DOI: 10.1016/j.jinsphys.2007.01.003.
Liska AJ, Shevchenko A. 2003. Expanding the organismal scope of proteomics: Cross-species protein identification by mass spectrometry and its implications. Proteomics 3(1): 19–28. DOI: 10.1002/pmic.200390004.
Liu W, Gray S, Huo Y, Li L, Wei T, Wang X. 2015. Proteomic analysis of interaction between a plant virus and its vector insect reveals new functions of hemipteran cuticular protein. Molecular and Cellular Proteomics 14(8): 2229–2242. DOI: 10.1074/mcp.M114.046763.
Mishra M, Saurabh S, Maurya R, Mudawal A, Parmar D, Singh PK. 2016. Proteome analysis of Bemisia tabaci suggests specific targets for RNAi mediated control. Journal of Proteomics 132: 93–102. DOI: 10.1016/j.jprot.2015.11.020.
Mishra S, Wang W, de-Oliveira IP, Atapattu AJ, Xia SW, Grillo R, Lescano CH, Yang X. 2021. Interaction mechanism of plant-based nanoarchitectured materials with digestive enzymes of termites as target for pest control: Evidence from molecular docking simulation and in vitro studies. Journal of Hazardous Materials 403: 123840. DOI: 10.1016/j.jhazmat.2020.123840.
Mostowy S, Shenoy AR. 2015. The cytoskeleton in cell-autonomous immunity: Structural determinants of host defence. Nature Reviews Immunology 15(9): 559–573. DOI: 10.1038/nri3877.
Ng JCK, Zhou JS. 2015. Insect vector – plant virus interactions associated with perspectives and future challenges. Current Opinion in Virology 15: 48–55. DOI: 10.1016/j.coviro.2015.07.006.
Pennington SR, Wilkins MR, Hochstrasser DF, Dunn MJ. 1997. Proteome analysis: From protein characterization to biological function. Trends in Cell Biology 7(4): 168–173. DOI: 10.1016/S0962-8924(97)01033-7.
Seddas P, Boissinot S, Strub JM, Van Dorsselaer A, Van Regenmortel MHV, Pattus F. 2004. Rack-1, GAPDH3, and actin: Proteins of Myzus persicae potentially involved in the transcytosis of beet western yellows virus particles in the aphid. Virology 325(2): 399–412. DOI: 10.1016/j.virol.2004.05.014.
Szabo Z, Janaky T. 2015. Challenges and developments in protein identification using mass spectrometry. TrAC - Trends in Analytical Chemistry 69: 76–87. DOI: 10.1016/j.trac.2015.03.007.
Takahashi Y, Tiongco ER, Cabauatan PQ, Koganezawa H, Hibino H, Omura T. 1993. Detection of Rice Tungro Bacilliform Virus by Polymerase Chain Reaction for Assessing Mild Infection of Plants and Viruliferous Vector Leafhoppers. In Phytopathology 83(6): 655. DOI: 10.1094/phyto-83-655.
Wang H, Wu K, Liu Y, Wu Y, Wang X. 2015. Integrative proteomics to understand the transmission mechanism of Barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi. Scientific Reports 5: 1–16. DOI: 10.1038/srep10971.
Zhang Z, Wu S, Stenoien DL, Paša-Toli? L. 2014. High-throughput proteomics. Annual Review of Analytical Chemistry 7: 427–454. DOI: 10.1146/annurev-anchem-071213-020216.

Most read articles by the same author(s)

1 2 > >>