Stable isotope analysis to assess the trophic level of arthropod in sugarcane ratoon agroecosystem

##plugins.themes.bootstrap3.article.main##

HERI PRABOWO
BAMBANG TRI RAHARDJO
GATOT MUDJIONO
AKHMAD RIZALI

Abstract

Abstract. Prabowo H, Rahardjo BT, Mudjiono G, Rizali A. 2022. Stable isotope analysis to assess the trophic level of arthropod in sugarcane ratoon agroecosystem. Biodiversitas 23: 2871-2881. Arthropods represent one of the main components of soil inhabitants and play an important role in maintaining soil health, as well as providing ecosystem services. The description of the trophic level of the ratoon sugarcane agroecosystem is needed to describe the role of organisms in the ecosystem to maximize the role of detritivores, predators, and parasitoids in the ratoon sugarcane agroecosystem. The stable isotope approach is widely used in various studies to describe trophic levels in an agroecosystem. The stable isotope technique, especially the one that uses stable isotopes of carbon (?13C) and nitrogen (?15N), can measure the trophic position that integrates energy assimilation or mass flow through all the different trophic pathways leading to an organism. Stable isotopes ?13C and ?15N can be used to identify the roles of arthropods in the ratoon sugarcane agroecosystem by identifying the composition of both isotopes. The ratio of arthropod's carbon assimilation (?13C) to sugarcane ranges from-1.4 to-5.45‰. In contrast, the ratio of nitrogen assimilation (?15N) of arthropod to sugarcane ranges from 3.86 to 39.7‰. The values of stable isotope ?13C and ?15N on predator and parasitoids are varied. The stable isotope value of carbon (?13C) for predators varies from-10.14 to-11.62‰. In contrast, the predator's stable isotope value of nitrogen (?15N) varies from 9.17 to 18.1%. The parasitoids' carbon stable isotope value (?13C) varies from 10.5 to 11.05‰. In contrast, parasitoids' nitrogen stable isotope value (?15N) varies from 12.8 to 17.05‰. The value of carbon (?13C) stable isotope assimilation between herbivores and predators varies from 0.006 to 1.38‰. While the value of nitrogen (?15N) stable isotope assimilation varies in the range of 0.33 to 10.3‰. Furthermore, the value of carbon (?13C) stable isotope assimilation between herbivores and parasitoids varies in the range of 5.3 to 9.23‰. While the value of nitrogen (?15N) stable isotope assimilation varies in the range of 3.79 to 10.3‰. Isotope content (?13C) shows the food resources of arthropods in the agroecosystem, while isotope value (?15N) shows the roles of arthropods in the sugarcane ratoon agroecosystem. Carbon stable isotope values of predator and parasitoids are close to zero. While the stable nitrogen isotope (?15N) values on arthropods are averagely above 10‰, values are suspected of having roles as predators or parasitoids. Knowing the trophic level of predators and parasitoids through stable isotopes in agroecosystems can be used to conserve and optimize natural enemies to suppress the development of herbivores.

##plugins.themes.bootstrap3.article.details##

References
Alp M, Cucherousset J. 2022. Food webs speak of human impact: Using stable isotope-based tools to measure ecological consequences of environmental change. Food Webs 30. doi:10.1016/j.fooweb.2021.e00218.
Aya FA, Kudo I (2010) Isotopic shifts with size, culture habitat, and enrichment between the diet and tissues of the Japanese scallop Mizuhopecten yessoensis (Jay, 1857). Marine Biology 157, 2157–2167. doi:10.1007/s00227-010-1480-y.
Birkhofer K, Dietrich C, John K, Schorpp Q, Zaitsev AS, Wolters V (2016) Regional conditions and land-use alter the potential contribution of soil arthropods to ecosystem services in Grasslands. Frontiers in Ecology and Evolution 3,. doi:10.3389/fevo.2015.00150.
Bouillon S, Connolly RM, Lee SY (2008) Organic matter exchange and cycling in mangrove ecosystems: Recent insights from stable isotope studies. Journal of Sea Research 59, 44–58. doi:10.1016/j.seares.2007.05.001.
Coleman D.C. and Odum DHW. 2015. Soil Fauna: Occurrence, Biodiversity, and Roles in Ecosystem Function. Soil Microbiology, Ecology and Biochemistry. Elsevier Publisher. http://dx.doi.org/10.1016/B978-0-12-415955-6.00005-0
Craine JM, Brookshire ENJ, Cramer MD, Hasselquist NJ, Koba K, Marin-Spiotta E, Wang L (2015) Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil 396, 1–26. doi:10.1007/s11104-015-2542-1.
Ferger SW, Böhning-Gaese K, Wilcke W, Oelmann Y, Schleuning M (2013) Distinct carbon sources indicate strong differentiation between tropical forest and farmland bird communities. Oecologia 171, 473–486. doi:10.1007/s00442-012-2422-9.
Galli, L.; Capurro, M.; Colasanto, E.; Molyneux, T.; Murray, A.; Torti, C.; Zinni, M. A synopsis of the ecology of Protura (Arthropoda: Hexapoda). Rev. Suisse Zool. 2019, 126, 155–164.
Gonçalves CA, de Camargo R, de Sousa RTX, Soares NS, de Oliveira RC, Stanger MC, Lana RMQ, Lemes EM (2021) Chemical and technological attributes of sugarcane as functions of organomineral fertilizer based on filter cake or sewage sludge as organic matter sources. PLoS ONE 16,. doi:10.1371/journal.pone.0236852.
Grice AM, Loneragan NR, Dennison WC (1996) Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass. Journal of Experimental Marine Biology and Ecology 195, 91–110. doi:10.1016/0022-0981(95)00096-8.
Guiry E (2019) Complexities of stable carbon and nitrogen isotope biogeochemistry in ancient freshwater ecosystems: Implications for the study of past subsistence and environmental change. Frontiers in Ecology and Evolution 7,. doi:10.3389/fevo.2019.00313.
Hernández-Castellano C, Piñol J, Espadaler X (2021) Distinct macroinvertebrate soil food webs at one-meter scale in a Mediterranean agroecosystem. Pedobiologia 87–88,. doi:10.1016/j.pedobi.2021.150751.
Perkins MJ, McDonald RA, van Veen FJF, Kelly SD, Rees G, Bearhop S (2014) Application of nitrogen and carbon stable isotopes (?15N and ?13C) to quantify food chain length and trophic structure. PLoS ONE 9,. doi:10.1371/journal.pone.0093281.
Sabadel AJM, Stumbo AD, Macleod CD (2019) Stable-isotope analysis: A neglected tool for placing parasites in food webs. Journal of Helminthology 93, 1–7. doi:10.1017/S0022149X17001201.
Susanti WI, Widyastuti R, Scheu S, Potapov A (2021) Trophic niche differentiation and utilisation of food resources in Collembola is altered by rainforest conversion to plantation systems. PeerJ 9,. doi:10.7717/peerj.10971.
Hood-Nowotny R, Knols BGJ (2007) Stable isotope methods in biological and ecological studies of arthropods. Entomologia Experimentalis et Applicata 124, 3–16. doi:10.1111/j.1570-7458.2007.00572.x.
Kaab A, Sharifi M. Mobli H. Nabavi-Pelesaraei A. Chau K wing. 2019. Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production. Energy. 181:1298-320. DOI: 10.1016/j.energy.2019.06.002.
Kiswara W, Huiskes AHL, Herman PMJ (2005) Uptake and allocation of 13C by Enhalus acoroides at sites differing in light availability. Aquatic Botany 81, 353–366. doi:10.1016/j.aquabot.2005.02.002.
Hyodo F, Tayasu I, Konaté S, Tondoh JE, Lavelle P, Wada E, Hyodo1 F, Tayasu2 I, Konat? S, Tondoh3 JE, Lavelle4 P, Wada5 E (2008) Gradual Enrichment of i5n with Humification of Diets in a Below-Ground Food Web: Relationship between i5n and Diet Age Determined Using i4c Gradual enrichment of 15N with humification of diets in a below-ground food web: relationship between 15N and diet age determined using 14C. Source: Functional Ecology 22, 516–522. doi:10.HH/j.1365-2435.2008.01386.x.
Kupfer A, Langel R, Scheu S, Himstedt W, Maraun M (2006) Trophic ecology of a tropical aquatic and terrestrial food web: Insights from stable isotopes (15N). Journal of Tropical Ecology 22, 469–476. doi:10.1017/S0266467406003336.
Krause A, Sandmann D, Bluhm SL, Ermilov S, Widyastuti R, Haneda NF, Scheu S, Maraun M (2019) Shift in trophic niches of soil microarthropods with conversion of tropical rainforest into plantations as indicated by stable isotopes (15N, 13C). PLoS ONE 14,. doi:10.1371/journal.pone.0224520.
Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biological Reviews 87, 545–562. doi:10.1111/j.1469-185X.2011.00208.x.
Martinelli LA, Camargo PB, Lara LBLS, Victoria RL, Artaxo P (2002) Stable carbon and nitrogen isotopic composition of bulk aerosol particles in a C4 plant landscape of southeast Brazil. Atmospheric Environment 36, 2427–2432. doi:10.1016/S1352-2310(01)00454-X.
McCutchan, J.H., Lewis, W.M., Kendall, C., McGrath, C.C., 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390.
Menta C. and S. Remelli. 2020. Soil health and arthropods: From complex system to worthwhile investigation. Insects 11.
Moebius-Clune, B.N., Moebius-Clune, D.J., Gugino, B.K., Idowu, O.J., Schindelbeck, R.R., Ristow, A., van Es, H.M., Thies, J.E., Shayler, H.A., McBride, M.B., Wolfe, D.W., Abawi, G.S., 2016. Comprehensive Assessment of Soil Health, third ed. The Cornell Framework Manual, Edition 3.1, Cornell Univ., Ithaca, NY
Moretti, M.; Dias, A.T.C.; de Bello, F.; Altermatt, F.; Chown, S.L.; Azcárate, F.M.; Bell, J.R.; Fournier, B.; Hedde, M.; Hortal, J.; et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 2017, 31, 558–567.
Nanganoa LT, Okolle JN, Missi V, Tueche JR, Levai LD, Njukeng JN (2019) Impact of different land-use systems on soil physicochemical properties and macrofauna abundance in the humid tropics of Cameroon. Applied and Environmental Soil Science 2019,. doi:10.1155/2019/5701278.
Page HM, Brooks AJ, Kulbicki M, Galzin R, Miller RJ, Reed DC, Schmitt RJ, Holbrook SJ, Koenigs C (2013) Stable Isotopes Reveal Trophic Relationships and Diet of Consumers in Temperate Kelp Forest and Coral Reef Ecosystems. SPECIAL ISSUE ON Coastal Long Term Ecological Research 26, 180–189. doi:10.2307/24862080.
Perkins MJ, McDonald RA, van Veen FJF, Kelly SD, Rees G, Bearhop S (2014) Application of nitrogen and carbon stable isotopes (?15N and ?13C) to quantify food chain length and trophic structure. PLoS ONE 9,. doi:10.1371/journal.pone.0093281.
Potapov, A. M., Tiunov, A. V., and Scheu, S. (2019b). Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94, 37–59.doi: 10.1111/brv.12434
Qin Q, Zhang F, Liu F, Wang C, Liu H (2021) Food web structure and trophic interactions revealed by stable isotope analysis in the midstream of the chishui river, a tributary of the yangtze river, China. Water (Switzerland) 13,. doi:10.3390/w13020195.
Rozanova OL, Tsurikov SM, Krivosheina MG, Tanasevitch A v., Fedorenko DN, Leonov VD, Timokhov A v., Tiunov A v., Semenina EE (2022) The isotopic signature of the “arthropod rain” in a temperate forest. Scientific Reports 12,. doi:10.1038/s41598-021-03893-6.
Sabadel AJM, Stumbo AD, Macleod CD (2019) Stable-isotope analysis: A neglected tool for placing parasites in food webs. Journal of Helminthology 93, 1–7. doi:10.1017/S0022149X17001201.
Schallhart, N., Tusch, M.J., Staudacher, K., Wallinger, C., Traugott, M., 2011. Stable isotope analysis reveals whether soil-living elaterid larvae move between agricultural crops. Soil Biol. Biochem. 43, 1612–1614
Schmidt SN, Olden JD, Solomon CT, vander Zanden MJ (2007) Quantitative approaches to the analysis of stable isotope food web data. Ecology 88, 2793–2802. doi:10.1890/07-0121.1.
Selim MM (2020) Introduction to the Integrated Nutrient Management Strategies and Their Contribution to Yield and Soil Properties. International Journal of Agronomy 2020,. doi:10.1155/2020/2821678.
Spain A, le Feuvre R (1997) Stable C and N isotope values of selected components of a tropical australian sugarcane ecosystem. Biology and Fertility of Soils 24, 118–122. doi:10.1007/BF01420231.
Suheriyanto D., Z. Zuhro, I.E. Farah, and A. Maulidiyah. 2019. The potential of soil arthropods as bioindicator of soil quality in relation to environmental factors at apple farm, Batu, East Java, Indonesia. J Phys Conf Ser 1217.
Sulok KMT, Ahmed OH, Khew CY, Lai PS, Zehnder JAM, Wasli ME (2020) Effects of organic soil amendments on photosynthetic traits of black pepper (Piper nigrum L.) in an alluvial soil. Applied and Environmental Soil Science 2020,. doi:10.1155/2020/8880162.
Traugott, M., Schallhart, N., Kaufmann, R., Juen, A., 2008. The feeding ecology of elaterid larvae in central European arable land: new perspectives based on naturally occurring stable isotopes. Soil Biol. Biochem. 40, 342–349
van der Sleen P, Zuidema PA, Pons TL (2017) Stable isotopes in tropical tree rings: theory, methods and applications. Functional Ecology 31, 1674–1689. doi:10.1111/1365-2435.12889.
Villamarín F, Jardine TD, Bunn SE, Marioni B, Magnusson WE (2018) Body size is more important than diet in determining stable-isotope estimates of trophic position in crocodilians. Scientific Reports 8,. doi:10.1038/s41598-018-19918-6.

Most read articles by the same author(s)

1 2 > >>