Enhancing soil carbon and rice dry biomass with microbial fuel cells, optimal spacing, and fertilizer in rice fields

##plugins.themes.bootstrap3.article.main##

SHOFIE RINDI NURHUTAMI
SUDADI
https://orcid.org/0000-0001-8580-5390
KOMARIAH
WIDYATMANI SIH DEWI
https://orcid.org/0000-0002-1947-1385
ADHIA AZHAR FAUZAN
https://orcid.org/0000-0002-3579-8249

Abstract

Abstract. Nurhutami SR, Sudadi, Komariah, Dewi WS, Fauzan AA. 2024. Enhancing soil carbon and rice dry biomass with microbial fuel cells, optimal spacing, and fertilizer in rice fields. Biodiversitas 25: 3331-3338. Microbial fuel cell (MFC) uses electroactive anode bacteria to compete in rice fields without disrupting cultivation or altering diversity. Therefore, this research aimed to explore the combination of MFC, different spacing methods (Jajarlegowo and conventional), and NPK (Nitrogen, Phosphorus, and Potassium) fertilizer affecting soil carbon dynamics and rice dry biomass. The key parameters included bacterial community, soil respiration, microbial biomass carbon, Soil Organic Carbon (SOC), Carbon to Nitrogen (CN) Ratio, and rice dry biomass. The results showed that there were no significant differences across the parameters when combined. However, MFC increased soil respiration (0.618 CO2.day-1) and microbial biomass carbon (0.121 ?g. g-1) but decreased SOC and rice dry biomass (0.039% and 3.978 g. clump-1). Jajarlegowo plant spacing enhanced soil respiration (0.583 CO2.day-1), microbial biomass carbon (0.122 ?g. g-1), and rice dry biomass (10.635 g. clump-1). Meanwhile, NPK fertilizer enhanced microbial biomass carbon (0.170 ?g. g-1), soil respiration (0.615 CO2.day-1), and rice dry biomass (5.993 g.clump-1) but lowered CN Ratio by 3.471. A positive correlation was also observed between soil carbon and rice dry biomass. These emphasized the need for a holistic method to develop MFC technology in rice paddy soils. Further research was suggested on the role of Electroactive Anodes Bacteria (EAB) in organic matter decomposition over multiple rice growing seasons.

##plugins.themes.bootstrap3.article.details##

References
Amin R, Djoyowasito G. 2017. Produksi bio-listrik dengan kompos dan urea pada sistem plant microbial fuel cell menggunakan tanaman padi. J Trop Agric Eng Biosyst 5 (3): 210-221. [Indonesian]
Behera M, Murthy SSR, Ghangrekar MM. 2011. Effect of operating temperature on performance of microbial fuel cell. Water Sci Technol 64 (4): 917-922. DOI: 10.2166/wst.2011.704.
Berg G, Smalla K. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68: 1-13. DOI: 10.1111/j.1574-6941.2009.00654.x.
Brust GE. 2019. Management strategies for organic vegetable fertility. In: Debabrata B, Shirley A, Micallef (eds). Safety and Practice for Organic Food. Academic Press, Cambridge. DOI: 10.1016/B978-0-12-812060-6.00009-X.
Buitrón G, López-Prieto I, Zúñiga IT, Vargas A. 2017. Reduction of start-up time in a microbial fuel cell through the variation of external resistance. Energy Procedia 142: 694-699. DOI: 10.1016/j.egypro.2017.12.114.
Dermiyati, Karyanto A, Niswati A, Lumban Raja J, Triyono S, Harini NVA. 2017. Activity of soil microorganisms during the growth of sweet corn (Zea mays saccharata Sturt) in the second planting time with the application of fertilizers and biochar. J Trop Soils 22 (1): 37-45. DOI: 10.5400/jts.2017.v22i1.37-45.
Dewi WS, Nurhutami SR. 2023. Carbon farming in paddy soil to increase soil C and soil health as an implementation of soil carbon 4 per mille. 8th Intl Conf Clim Chang 1165: 1-10. DOI: 10.1088/1755-1315/1165/1/012023.
Dewi WS, Romadhon MR, Amalina DD, Aziz A. 2022. Paddy soil quality assessment to sustaining food security. IOP Conf Ser: Earth Environ Sci 1165 (1): 012051. DOI: 10.1088/1755-1315/1107/1/012051.
Ding L-J, An X-L, Li S, Zhang G-L, Zhu Y-G. 2014. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environ Sci Technol 48 (18): 10641-10647. DOI: 10.1021/es503113s.
Dunaj SJ, Vallino JJ, Hines ME, Gay M, Kobyljanec C, Rooney-Varga JN. 2012. Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells. Environ Sci Technol 46: 1914-1922. DOI: 10.1021/es2032532.
Fakhirruddin F, Amid A, Wan Salim WWA, Azmi AS. 2018. Electricity generation in Microbial Fuel Cell (MFC) by bacterium isolated from rice paddy field soil. E3S Web Conf 34: 02036. DOI: 10.1051/e3sconf/20183402036.
Fauzan IA, Meryandini A, Ridwan R, Fidriyanto R, Agustini NWS, Santosa DA. 2022. Coupling Indonesian indigenous Citrobacter freundii and Chlorella pyrenoidosa strain on the anode of microbial fuel cell with various substrates. Biodiversitas 23 (5): 2471-2481. DOI: 10.13057/biodiv/d230527.
Food and Agriculture Organization of The United Nations. 2019. Standard operating procedure for soil organic carbon Walkley-Black method. Food Agriculture Organization. https://openknowledge.fao.org/server/ api/core/bitstreams/e498d73e-1711-4d18-9183-aa8476387e2c/content.
Gustave W, Yuan ZF, Sekar R, Ren YX, Chang, HC, Liu JY, Chen Z. 2019. The change in biotic and abiotic soil components influenced by paddy soil microbial fuel cells loaded with various resistances. J Soils Sediments 19: 106-115. DOI: 10.1007/s11368-018-2024-1.
Inubushi K, Hori K, Matsumoto S, Wada H. 1997. Anaerobic decomposition of organic carbon in paddy soil in relation to methane emission to the atmosphere. Water Sci Technol 36 (6-7): 523-530. DOI: 10.2166/wst.1997.0632.
Isabel San-Martín M, Alonso RM, Ivars-Barceló F, Escapa A, Morán A. 2023. Complete arsenic removal from water using biocatalytic systems based on anaerobic films grown on carbon fibers. Catal Today 423: 114269. DOI: 10.1016/j.cattod.2023.114269.
Jadhav GS, Ghangrekar MM. 2009. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol 100 (2): 717-723. DOI: 10.1016/j.biortech.2008.07.041.
Kabutey F T, Zhao Q, Wei L, Ding J, Antwi P, Quashie FK, Wang W. 2019. An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renew Sustain Energy Rev 110: 402-414. DOI: 10.1016/j.rser.2019.05.016.
Konovalova EY, Stom DI, Zhdanova GO, Yuriev DA, Li Y, Barbora L, Goswami P. 2017. The microorganisms used for working in microbial fuel cells. Intl Conf Electr Electron Mater Appl Sci 1952 (1): 0200171-02001710. DOI: 10.1063/1.5031979.
Kouzuma A, Kaku N, Watanabe K. 2014. Microbial electricity generation in rice paddy fields: Recent advances and perspectives in rhizosphere microbial fuel cells. Appl Microbiol Biotechnol 98: 9521-9526. DOI: 10.1007/s00253-014-6138-0.
Kusyaeri K, Dan H, Murtiani S, Pengkajian B, Pertanian T, Barat J. 2014. Aplikasi sistem tanam jajar legowo untuk meningkatkan produktivitas padi sawah. Jurnal Pertanian Agros 16: 285-291. [Indonesian]
Liu S, Song H, Li X, Yang F. 2013. Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. Intl J Photoenergy 2013 (1): 172010. DOI: 10.1155/2013/172010.
Liu S, Xue H, Wang Y, Wang Z, Feng X, Pyo SH. 2022. Effects of bioelectricity generation processes on methane emission and bacterial community in wetland and carbon fate analysis. Bioresour Bioprocess 9 (1): 1-14. DOI: 10.1186/s40643-022-00558-8.
Lu Y, Liu L, Wu S, Zhong W, Xu Y, Deng H. 2019. Electricity generation from paddy soil for powering an electronic timer and an analysis of active exoelectrogenic bacteria. AMB Express 9: 1-7. DOI: 10.1186/s13568-019-0781-x.
Orrell P, Bennett A. 2013. How can we exploit above-belowground interactions to assist in addressing the challenges of food security?. Front Plant Sci 4: 432. DOI: 10.3389/fpls.2013.00432.
Pham DD, Cai K, Phung LD, Kaku N, Sasaki A, Sasaki Y, Horiguchi K, Pham DV, Watanabe T. 2019. Rice cultivation without synthetic fertilizers and performance of microbial fuel cells (MFCs) under continuous irrigation with treatedwastewater. Water 11 (7): 1516. DOI: 10.3390/w11071516.
Ranatunga T, Onishi T, Hiramatsu K, Ishiguro Y. 2018. Redox distribution profiles of flooded paddy soils with microbial fuel cell applications. Intl J Geomate 14 (45): 52-57. DOI: 10.21660/2018.45.25281.
Rizzo A, Boano F, Revelli R, Ridolfi L. 2013. Can microbial fuel cells be an effective mitigation strategy for methane emissions from paddy fields?. Ecol Eng 60: 167-171. DOI: 10.1016/j.ecoleng.2013.07.033.
Rubaba O, Araki Y, Yamamoto S, Suzuki K, Sakamoto H, Matsuda A, Futamata H. 2013. Electricity producing property and bacterial community structure in microbial fuel cell equipped with membrane electrode assembly. J Biosci Bioeng 116 (1): 106-113. DOI: 10.1016/j.jbiosc.2013.01.019.
Setia R, Verma SL, Marschner P. 2012. Measuring microbial biomass carbon by direct extraction-comparison with chloroform fumigation-extraction. Eur J Soil Biol 53: 103-106. DOI: 10.1016/j.ejsobi.2012.09.005.
Sivasankar P, Poongodi S, Seedevi P, Sivakumar M, Murugan T, Loganathan S. 2019. Bioremediation of wastewater through a quorum sensing triggered MFC: A sustainable measure for waste to energy concept. J Environ Manag 237: 84-93. DOI: 10.1016/j.jenvman.2019.01.075.
Tamburini G, De Simone S, Sigura M, Boscutti F, Marini L. 2016. Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes. Proceed Biol Sci 283 (1837): 20161369. DOI: 10.1098/rspb.2016.1369.
Tikhonova EN, Grouzdev DS, Avtukh AN, Kravchenko IK. 2021. Methylocystis silviterrae sp. nov., a high-affinity methanotrophic bacterium isolated from the boreal forest soil. Intl J Syst Evol Microbiol 71 (12): 005166. DOI: 10.1099/ijsem.0.005166.
Turner S, Mikutta R, Meyer-Stüve S, Guggenberger G, Schaarschmidt F, Lazar CS, Dohrmann R, Schippers A. 2017. Microbial community dynamics in soil depth profiles over 120,000 years of ecosystem development. Front Microbiol 8: 874. DOI: 10.3389/fmicb.2017.00874.
Wang N, Chen Z, Li HB, Su JQ, Zhao F, Zhu YG. 2015a. Bacterial community composition at anodes of microbial fuel cells for paddy soils: The effects of soil properties. J Soils Sediments 15: 926-936. DOI: 10.1007/s11368-014-1056-4.
Wang P, Liu Y, Li L, Cheng K, Zheng J, Zhang X, Zheng J, Joseph S, Pan G. 2015b. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Sci Rep 5 (1): 15704. DOI: 10.1038/srep15704.
Wetser K. 2016. Electricity from wetlands: Technology assessment of the tubular plant microbial fuel cell with an integrated biocathode. [Dissertation]. Wageningen University, Netherlands.
Zhang G, Liang D, Zhao Z, Qi J, Huang L. 2022. Enhanced performance of microbial fuel cell with electron mediators from tetracycline hydrochloride degradation. Environ Res 206: 112605. DOI: 10.1016/j.envres.2021.112605.
Zhang P, Yang C, Xu Y, Li H, Shi W, Xie X, Lu M, Huang L, Huang W. 2019. Accelerating the startup of microbial fuel cells by facile microbial acclimation. Bioresour Technol Rep 8: 100347. DOI: 10.1016/j.biteb.2019.100347.
Zhang YC, Jiang ZH, Liu Y. 2015. Application of electrochemically active bacteria as anodic biocatalyst in microbial fuel cells. Chinese J Anal Chem 43 (1): 155-163. DOI: 10.1016/S1872-2040(15)60800-3.
Zhi W, Ge Z, He Z, Zhang H. 2014. Methods for understanding microbial community structures and functions in microbial fuel cells: A review. Bioresour Technol 171: 461-468. DOI: 10.1016/j.biortech.2014.08.096.
Zhong F, Yu C, Chen Y, Wu X, Wu J, Liu G, Zhang J, Deng Z, Cheng S. 2020. Nutrient removal process and cathodic microbial community composition in integrated vertical-flow constructed wetland - microbial fuel cells filled with different substrates. Front Microbiol 11: 1896. DOI: 10.3389/fmicb.2020.01896.
Zhou F, Cui J, Zhou J, Yang J, Li Y, Leng Q, Wang Y, He D, Song L, Gao M, Zeng J, Chan A. 2018. Increasing atmospheric deposition nitrogen and ammonium reduced microbial activity and changed the bacterial community composition of red paddy soil. Sci Tot Environ 633: 776-784. DOI: 10.1016/j.scitotenv.2018.03.217.