Biomass accumulation and carbon sequestration potential in varying tree species, ages and densities in Gunung Bromo Education Forest, Central Java, Indonesia

##plugins.themes.bootstrap3.article.main##

AHMAD ARIF DARMAWAN
https://orcid.org/0000-0003-3045-6212
DWI PRIYO ARIYANTO
TYAS MUTIARA BASUKI
JAUHARI SYAMSIYAH
WIDYATMANI SIH DEWI

Abstract

Abstract. Darmawan AA, Ariyanto DP, Basuki TM, Syamsiyah J, Dewi WS. 2022. Biomass accumulation and carbon sequestration potential in varying tree species, ages and densities in Gunung Bromo Education Forest, Central Java, Indonesia. Biodiversitas 23: 5093-5100. Forest biomass plays an important role in carbon storage to mitigate climate change. While many studies have investigated the carbon stock of various forests, adding knowledge in the context of education forest might enrich the importance of this forest as a carbon pool besides its role for education purposes. Gunung Bromo Education Forest in Karanganyar Regency, Central Java, Indonesia consists of several tree cover types with each type having a different ability to absorb carbon dioxide in the atmosphere. This research aimed to determine the accumulation of biomass in Gunung Bromo Education Forest and to investigate the potential for carbon sequestration across different tree species, age classes and densities. Three species of tree (i.e. pine, Indonesian rosewood and mahogany) with varying ages were measured and calculated the biomass (i.e. tree, litter and understorey) and total carbon sequestration potentials (i.e. tree, litter and understorey, and soil organic carbon). This study used purposive sampling method across 9 combinations of tree cover type and age classes, each with 3 replication, resulting in a total of 27 sampling points. The results showed pine stands planted in 1973 had the highest tree biomass of 461.08 t ha-1 and while the pine agroforest planted in 2016 and Indonesian rosewood agroforest planted in 2018 had the lowest tree biomass with 1.02 t ha-1 and 0.39 t ha-1, respectively. Similarly, the pine stands planted in 1973 had the highest total carbon sequestration of 372.68 t ha-1 and the lowest in the pine agroforest planted in 2016 and Indonesian rosewood agroforest planted in 2018 with 187.11 t ha-1 and 193.58 t ha-1 respectively. The results of this study strengthen the common agreement in previous carbon studies that tree age strongly affects biomass accumulation and carbon sequestration, in which the older the plant, the higher the carbon sequestration potential than that of younger plants.

##plugins.themes.bootstrap3.article.details##

References
Abera, G., & Wolde-Meskel, E. (2013). Soil Properties, and Soil Organic Carbon Stocks of Tropical Andosol under Different Land Uses. Open Journal of Soil Science, 03(03), 153–162. https://doi.org/10.4236/ojss.2013.33018
Al-Reza, D. D., Hermawan, R., & Prasetyo, L. B. (2017). Potensi Cadangan Karbon Di Atas Permukaan Tanah Di Taman Hutan Raya Pancoran Mas, Depok. Media Konservasi, 22(1), 71–78.
Balittanah. (2009). Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. In Balai Penelitian Tanah. Balai Penelitian Tanah. https://doi.org/10.30965/9783657766277_011
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–1026. https://doi.org/10.1126/science.1206432
Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., & Parton, W. J. (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8(10), 776–779. https://doi.org/10.1038/ngeo2520
Dey, D. C., Knapp, B. O., Battaglia, M. A., Deal, R. L., Hart, J. L., O’Hara, K. L., Schweitzer, C. J., & Schuler, T. M. (2019). Barriers to natural regeneration in temperate forests across the USA. New Forests, 50(1), 11–40. https://doi.org/10.1007/s11056-018-09694-6
Edwin, M. (2016). Penilaian Stok Karbon Tanah Organik pada Beberapa Tipe Penggunaan Lahan di Kutai Timur, Kalimantan Timur. Jurnal Agrifor, 15(2), 279–288.
Erkan, N., & Güner, ?. T. (2018). Determination of carbon concentration of tree components for Scotch pine forests in Türkmen Mountain (Eski?ehir, Kütahya) Region. Forestist, 68(2), 87–92. https://doi.org/10.26650/forestist.2018.330657
Faraco, L. F. D., & Borsato, R. (2009). Interactions between climate and forest ecosystems?: a review of current debates and perspectives in a global warming scenario. Change, October, 18–23. https://doi.org/10.13140/2.1.3082.6242
Fee, E. (2019). Implementing the Paris Climate Agreement: Risks and Opportunities for Sustainable Land Use. In International Yearbook ofSoil Law and Policy (pp. 249–270). https://doi.org/10.1007/978-3-030-00758-4_12
Gießelmann, U. C., Martins, K. G., Brändle, M., Schädler, M., Marques, R., & Brandl, R. (2011). Lack of home-field advantage in the decomposition of leaf litter in the Atlantic Rainforest of Brazil. Applied Soil Ecology, 49(1), 5–10. https://doi.org/10.1016/j.apsoil.2011.07.010
Hairiah, K., & Rahayu, S. (2007). Pengukuran Karbon Tersimpan di Berbagai Macam Penggunaan Lahan. In World Agroforestry Centre. World Agroforestry Centre.
Hairiah, K., & Rahayu, S. (2011). Pengukuran Cadangan Karbon dari Tingkat Lahan ke Bentang Lahan. World Agroforestry Centre.
Hakkenberg, C. R., & Goetz, S. J. (2021). Climate mediates the relationship between plant biodiversity and forest structure across the United States. Global Ecology and Biogeography, 30(11), 2245–2258. https://doi.org/10.1111/geb.13380
Hanberry, B. B., He, H. S., & Shifley, S. R. (2016). Loss of aboveground forest biomass and landscape biomass variability in Missouri, US. Ecological Complexity, 25, 11–17. https://doi.org/10.1016/j.ecocom.2015.11.001
Hernández, J., del Pino, A., Vance, E. D., Califra, Á., Del Giorgio, F., Martínez, L., & González-Barrios, P. (2016). Eucalyptus and Pinus stand density effects on soil carbon sequestration. Forest Ecology and Management, 368, 28–38. https://doi.org/10.1016/j.foreco.2016.03.007
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Istomo, I., & Hartarto, W. (2019). Composition of Types and Structures Establish Various Forest Formations at Bama Resort. Jurnal Silvikultur Tropika, 10(02), 75–82.
Johnson, S. E., & Abrams, M. D. (2009). Age class, longevity and growth rate relationships: Protracted growth increases in old trees in the eastern United States. Tree Physiology, 29(11), 1317–1328. https://doi.org/10.1093/treephys/tpp068
Köhl, M., Neupane, P. R., & Lotfiomran, N. (2017). The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS ONE, 12(8), 1–17. https://doi.org/10.1371/journal.pone.0181187
Krisnawati, H., Adinugroho, W. C., & Imanuddin, R. (2012). Monograf Model-Model Alometrik untuk Pendugaan Biomassa Pohon pada Berbagai Tipe Ekosistem di Indonesia. Badan Penelitian dan Pengembangan Kehutanan. Kementerian Kehutanan.
Leonika, A., Nugroho, Y., & Rudy, G. S. (2021). Effect of The Density Againts Physical Properties of Soil on Various Landcover in KHDTK Mandiangin ULM. Jurnal Sylva Scienteae, 04(4), 608–616.
Li, Z., Mighri, Z., Sarwar, S., & Wei, C. (2021). Effects of Forestry on Carbon Emissions in China: Evidence From a Dynamic Spatial Durbin Model. Frontiers in Environmental Science, 9(October), 1–15. https://doi.org/10.3389/fenvs.2021.760675
Liu, B., Chen, H. Y. H., & Yang, J. (2018). Understory community assembly following wildfire in boreal forests: Shift from stochasticity to competitive exclusion and environmental filtering. Frontiers in Plant Science, 871(December), 1–12. https://doi.org/10.3389/fpls.2018.01854
Lukito, M., & Rohmatiah, A. (2013). Estimasi biomassa dan karbon tanaman Jati umur 5 tahun ( Kasus Kawasan Hutan Tanaman Jati Unggul Nusantara ( JUN ) Desa Krowe , Kecamatan Lembeyan Kabupaten Magetan ). Agri-Tek, 14(1), 1–23.
Lutz, J. A., Furniss, T. J., Johnson, D. J., Davies, S. J., Allen, D., Alonso, A., Anderson-Teixeira, K. J., Andrade, A., Baltzer, J., Becker, K. M. L., Blomdahl, E. M., Bourg, N. A., Bunyavejchewin, S., Burslem, D. F. R. P., Cansler, C. A., Cao, K., Cao, M., Cárdenas, D., Chang, L. W., … Zimmerman, J. K. (2018). Global importance of large-diameter trees. Global Ecology and Biogeography, 27(7), 849–864. https://doi.org/10.1111/geb.12747
Ma, J., Kang, F., Cheng, X., & Han, H. (2018). Moderate thinning increases soil organic carbon in Larix principis-rupprechtii (Pinaceae) plantations. Geoderma, 329(May), 118–128. https://doi.org/10.1016/j.geoderma.2018.05.021
Mehring, M., & Stoll-Kleemann, S. (2011). How effective is the buffer zone? linking institutional processes with satellite images from a case study in the Lore Lindu forest biosphere reserve, Indonesia. Ecology and Society, 16(4). https://doi.org/10.5751/ES-04349-160403
Moreira, D., & Pires, J. C. M. (2016). Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresource Technology, 215(March), 371–379. https://doi.org/10.1016/j.biortech.2016.03.060
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823
Na, M., Sun, X., Zhang, Y., Sun, Z., & Rousk, J. (2021). Higher stand densities can promote soil carbon storage after conversion of temperate mixed natural forests to larch plantations. European Journal of Forest Research, 140(2), 373–386. https://doi.org/10.1007/s10342-020-01346-9
Nunes, L. J. R., Meireles, C. I. R., Gomes, C. J. P., & Ribeiro, N. M. C. A. (2019). Forest management and climate change mitigation: A review on carbon cycle flow models for the sustainability of resources. Sustainability (Switzerland), 11(19). https://doi.org/10.3390/su11195276
Oliver, T. H., & Morecroft, M. D. (2014). Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 5(3), 317–335. https://doi.org/10.1002/wcc.271
Ospina-Noreña, J. E., Bermeo Fúquene, P. A., Darghan Contreras, E., & Barrientos-Fuentes, J. C. (2019). Management and ensemble of future climate scenarios for specific agricultural systems in the municipality of Nilo, Cundinamarca (Colombia). Atmosfera, 32(3), 197–211. https://doi.org/10.20937/ATM.2019.32.03.03
Padmakumar, B., Sreekanth, N. P., Shanthiprabha, V., Paul, J., Sreedharan, K., Augustine, T., Jayasooryan, K. K., Rameshan, M., Mohan, M., Ramasamy, E. V., & Thomas, A. P. (2018). Tree biomass and carbon density estimation in the tropical dry forest of southern western Ghats, India. IForest, 11(4), 534–541. https://doi.org/10.3832/ifor2190-011
Repo, A., Rajala, T., Henttonen, H. M., Lehtonen, A., Peltoniemi, M., & Heikkinen, J. (2021). Age-dependence of stand biomass in managed boreal forests based on the Finnish National Forest Inventory data. Forest Ecology and Management, 498(April), 4–11. https://doi.org/10.1016/j.foreco.2021.119507
Robinson, E. J. Z., Albers, H. J., & Busby, G. M. (2013). The impact of buffer zone size and management on illegal extraction, park protection, and enforcement. In Ecological Economics (Vol. 92). https://doi.org/10.1016/j.ecolecon.2012.06.019
Santiz, E. C., Lorenzo, C., Carrillo-Reyes, A., Navarrete, D. A., & Islebe, G. (2016). Effect of climate change on the distribution of a critically threatened species. Therya, 7(1), 147–159. https://doi.org/10.12933/therya-16-358
Saputra, M. H., & Lee, H. S. (2021). Evaluation of climate change impacts on the potential distribution of styrax sumatrana in north sumatra, indonesia. Sustainability (Switzerland), 13(2), 1–22. https://doi.org/10.3390/su13020462
Silva, C. H. L., Aragão, L. E. O. C., Anderson, L. O., Fonseca, M. G., Shimabukuro, Y. E., Vancutsem, C., Achard, F., Beuchle, R., Numata, I., Silva, C. A., Maeda, E. E., Longo, M., & Saatchi, S. S. (2020). Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Science Advances, 6(40), 1–9. https://doi.org/10.1126/sciadv.aaz8360
Slik, J. W. F., Paoli, G., Mcguire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., Clark, C., Collins, M., Dauby, G., Ding, Y., Doucet, J. L., Eler, E., Ferreira, L., Forshed, O., Fredriksson, G., Gillet, J. F., … Zweifel, N. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22(12), 1261–1271. https://doi.org/10.1111/geb.12092
Soerianegara, I., & Indrawan, A. (2005). Ekologi Hutan Indonesia. Institut Pertanian Bogor.
Solomon, A., Polvani, L. M., Smith, K. L., & Abernathey, R. P. (2015). The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1(WACCM). Geophysical Research Letters, 42(13), 5547–5555. https://doi.org/10.1002/2015GL064744
Stephenson, N. L., Das, A. J., Condit, R., Russo, S. E., Baker, P. J., Beckman, N. G., Coomes, D. A., Lines, E. R., Morris, W. K., Rüger, N., Álvarez, E., Blundo, C., Bunyavejchewin, S., Chuyong, G., Davies, S. J., Duque, Á., Ewango, C. N., Flores, O., Franklin, J. F., … Zavala, M. A. (2014). Rate of tree carbon accumulation increases continuously with tree size. Nature, 507(7490), 90–93. https://doi.org/10.1038/nature12914
Sukmawati, T., Fitrihidajati, H., & Indah, N. K. (2015). Penyerapan Karbon Dioksida pada Tanaman Hutan Kota di Surabaya The Carbon Dioxide Absorption of Plants of the Urban Forest in Surabaya. Lentera Bio, 4(1), 108–111. http://ejournal.unesa.ac.id/index.php/lenterabio
Sutaryo, D. (2009). Penghitungan Biomassa: Sebuah pengantar untuk studi karbon dan perdagangan karbon. Wetlands International Indonesia Programme.
Sutoyo, S. (2010). KEANEKARAGAMAN HAYATI INDONESIA Suatu Tinjauan?: Masalah dan Pemecahannya. Buana Sains, 10(2), 101–106.
Uthbah, Z., Sudiana, E., & Yani, E. (2017). Analisis Biomasa dan Cadangan Karbon pada Berbagai Umur Tegakan Damar (Agathis dammara (Lamb.) Rich.) dI KPH Banyumas Timur. Scripta Biologica, 4(2), 119. https://doi.org/10.20884/1.sb.2017.4.2.404
Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F., & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733(xxxx). https://doi.org/10.1016/j.scitotenv.2020.137782
Yin, W., Yin, M., Zhao, L., & Yang, L. (2012). Research on the Measurement of Carbon Storage in Plantation Tree Trunks Based on the Carbon Storage Dynamic Analysis Method. International Journal of Forestry Research, 2012, 1–10. https://doi.org/10.1155/2012/626149
Zhang, H., Goll, D. S., Manzoni, S., Ciais, P., Guenet, B., & Huang, Y. (2018). Modeling the effects of litter stoichiometry and soil mineral N availability on soil organic matter formation using CENTURY-CUE (v1.0). Geoscientific Model Development, 11(12), 4779–4796. https://doi.org/10.5194/gmd-11-4779-2018
Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J., & Fogel, M. L. (2013). Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology and Biochemistry, 60, 23–32. https://doi.org/10.1016/j.soilbio.2013.01.001