Small scale genetic structure of striped snakehead, Channa striata in the river and swampy areas of the south region of Central Java, Indonesia

##plugins.themes.bootstrap3.article.main##

NUNING SETYANINGRUM
W. LESTARI
AGUS NURYANTO

Abstract

Abstract. Setyaningrum N, Lestari W, Nuryanto A. 2024. Small scale genetic structure of striped snakehead, Channa striata in the river and swampy areas of the south region of Central Java, Indonesia. Biodiversitas 25: 2959-2966. This study focuses on the exploration and characterization of Channa striata population in swampy areas located in south-central Java, Indonesia, specifically in the regencies of Purworejo, Kebumen, Banyumas, and Cilacap. These regions are known for their diverse and unique ecosystems, making them ideal sites for ecological research. Fragmented populations of Channa striata are observed in the aquatic ecosystems of south-central Java, Indonesia. However, research on C. striata in swampy areas of south-central Java has not been conducted yet. Evaluating the genetic structure of the striped snakehead is a crucial endeavor that can be accomplished through the analysis of the cytochrome c oxidase 1 gene. Therefore, this research aims to estimate the genetic diversity and differentiation among C. striata populations. This study analyzed 74 specimen of C. striata collected from Keburuan, Karangbolong, Jatijajar, Sumpiuh, and Kedungreja in south-central Java. The used marker has moderate haplotype diversity (0.541±0.065) but low nucleotide diversity (0.0025±0.0017). Haplotype diversity within the population ranges from low (0.151±0.093) to high (0.833±0.222), while all populations showed low nucleotide diversity (0.0006±0.0008 to 0.0037±0.0030). Through the analysis of genetic markers, striped snakehead (C. striata) populations can be categorized into three distinct groups. The findings revealed that population fragmentation has resulted in reduced genetic diversity and localized population structuring in the river and swampy areas of south-central Java. These results highlight the importance of separate management strategies for each population to ensure their conservation and sustainable management.

##plugins.themes.bootstrap3.article.details##

References
Abbas, K., Xiaoyun, Z. & Weimin, W. 2017. Microsatellite markers reveal genetic differentiation of Chinese dojo loach Misgurnus anguillicaudatus in the Yangtze River basin. Turkish Journal of Fisheries and Aquatic Sciences 17: 1167-1177.
Achrem, M., Skuza, L., Kirczuk, L., Domagala, J., Pilecka-Rapacz, M. & Czerniawski, R. 2017. Assessment of genetic variability in common whitefish from the catchment area of the Oder River using microsatellite markers. Acta Biologica 24: 5-13.
Adamson, E.A.S., Hurwood, D.A. & Mather, P.B. 2012. Insights into historical drainage evolution based on the phylogeography of the chevron snakehead fish (Channa striata) in the Mekong Basin. Freshwater Biology https://doi.org/10.1111/j.1365-2427.2012.02864.x
Adamson, E.A.S., Hurwood, D.A. & Mather, P.B. 2010. A reappraisal of the evolution of Asian snakehead ?shes (Pisces, Channidae) using molecular data from multiple genes and fossil calibration. Molecular Phylogenetic and Evolution 56: 707-717.
Ahmadi, A. & Mangkurat, U.L. 2018. The length weight relationship and condition factor of the threatened snakehead (Channa striata) from Sungai Batang Hari River, Indonesia. Polish Journal of Natural Sciences 33 (4): 607-623.
Ansyari, P. & Ahmadi, S. 2020. Food habits and biolimnology of snakehead larvae and fingerlings from different habitats. AACL Bioflux (13) 6: 3520-3531
Baisvar, V.S., Kumar, R., Singh, M. & Kushwaha, B. 2019. Cytochrome c oxidase I gene-based genetic divergence and molecular phylogeny among the species of fish Genus Channa. Proceedings of the National Academy of Sciences India Section B - Biological Sciences 89(4): 1455–1463. https://doi.org/10.1007/s40011-018-01070-w
Baisvar, V.S., Singh, M. & Kumar, R. 2018. Population structuring of Channa striata from Indian waters using control region of mtDNA. Mitochondrial DNA Part A 30(3): 414–423. https://doi.org/10.1080/24701394.2018.1532416
Bandelt, H.J., Foster, P. & Rohl, A. 1999. Median-joining networks for inferring intraspeci?c phylogenies. Molecular Biology and Evolution 16(1): 37-48.
Barasa, J.E., Abila, R., Grobler, J.P., Dangasuk, O.G. & Njahira, M.N. 2014. Genetic diversity and gene flow in Clarias gariepinus from Lakes Victoria and Kanyaboli, Kenya. African Journal of Aquatic Science 39(3): 287-293. DOI: 10.2989/16085914.2014.933734
Bartakova, V., Reichard, M., Janko, K., Polacik, M., Blazek, R., Reichwald, K., Cellerino, A. & Bryja, J. 2013. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique. BMC Ecology and Evolution 13: 196.
Basharat, H., Gafhoor, A., Chavhan, A., Zafar, M.M., Abbas, K., Tabasum, J. & Parveen, R. 2016. Microsatellite markers revealed poor genetic structure of Wallago attu in Punjab, Pakistan. International Journal of Life Sciences 4 (3): 385-393.
Benziger, A., Philip, S., Raghavan, R., Anvar Ali, P.H., Sukumaran M, Tharian, J.C., Dahanukar, N., Baby, F., Peter, R., Devi, K.R., Radhakrishnan, K.V., Haniffa, M.A., Britz, R. & Antunes, A. 2011. Unraveling a 146 Years Old Taxonomic Puzzle: Validation of Malabar Snakehead, Species-Status and Its Relevance for Channid Systematics and Evolution. PLoS ONE 6(6): e21272. doi:10.1371/journal.pone.0021272
Boonkusol, D. & Tongbai, W. 2016. Genetic variation of striped snakehead fish (Channa striata) in the river basin of central Thailand inferred from mtDNA COI gene sequences analysis. Journal of Biological Sciences 16(1): 37–43. https://doi.org/10.3923/jbs.2016.37.43
Candek, K & Kuntner, M. 2015. DNA barcoding gap: Reliable species identi?cation over morphological and geographical scales. Molecular Ecology Resources 15 (2): 268-277. https:// doi.org/10.1111/1755-0998.12304.
Chan, B., Ngor, P.B., So, N. & Lek, S. 2017. Spatial and temporal changes in fish yields and fish communities in the largest tropical floodplain lake in Asia. International Journal of Limnology 53: 485-493. DOI: 10.1051/limn/2017027.
Chan, B., Brosse, S., Hogan, Z.S., Peng, B.N.P.B. & Lek, S. 2020. Influence of Local habitat and climatic factors on the distribution of fish species in the Tonle Sap Lake. Water 2 (3): 786. DOI: 10.3390/w12030786.
Chaudhry, S., de Alwis Goonatilake, S., Fernando, M. & Kotagama, O. 2019. Channa striata. The IUCN Red List of Threatened Species 2019: e.T166563A60591113.
Cia, W.O.C., Asriyana, and Halili. 2018. Mortality and exploitation rate of striped snakehead (Channa striata) in Aopa Watumohai Swamp, District of Anga. Jurnal Manajemen Sumber Daya Perairan 3 (3): 223-231. [Indonesian]
Coad, B.W. 2016. Contribution to the knowledge of the snakeheads of Iran (Family Channidae). Iranian Journal of Ichthyology 3 (1): 65-72.
Coleman, R.A., Gauffre, B., Pavlova, A., Beheregaray, L.B., Kearns, J., Lyon, J., Sasaki, M., Leblois, R., Sgro, C. & Sunnucks, P. 2018. Arti?cial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater ?sh. Heredity 120: 515-532.
Courtenay, W.R. & Williams, J.D. 2004. Snakeheads (Pisces, Channidae): a biological synopsis and risk assessment, Vol. 1251. Roston, VA: US Geological Survey.
Damerau, M., Matschiner, M., Salzburger, W. & Hanel, R. 2012. Comparative population genetics of seven notothenioid fish species reveals high levels of gene flow along ocean currents in the southern Scotia Arc, Antarctica. Polar Biology 35: 1073-1086.
Das BK. 1928. The bionomics of certain air-breathing fishes of India, together with an account of the development of their air-breathing organs. Philosophical Transaction of the Royal Society London B Biological Science 216:183–219.
de Jong, M.A., Wahlberg, N., van Eijk, M., Brakefield, P.M. & Zwaan, B.J. 2011. Mitochondrial DNA Signature for Range-Wide Populations of Bicyclus anynana Suggests a Rapid Expansion from Recent Refugia. PLoS ONE 6(6): e21385. doi:10.1371/journal.pone.0021385
Dohna, T.A., Timm, J., Hamid, L. & Kochzius, M. 2015. Limited connectivity and a phylogeographic break characterize populations of the pink anemonefish, Amphiprion perideraion, in the Indo-Malay Archipelago: inferences from a mitochondrial and microsatellite loci. Ecology and Evolution 5(8): 1717-1733
Doublet, A.C., Croiseau, P., Fritz, S., Michenet, A., Hoze, C., Danchin-Burge, C., Laloe, D. & Restoux, G. 2019. The impact of genomic selection on genetic diversity and genetic gain in three French dairy cattle breeds. Genetics Selection Evolution 51: 52 (13pp). https://doi.org/10.1186/s12711-019-0495-1
Esa, Y. & Rahim, K.A.A. 2013. Genetic structure and preliminary findings of cryptic diversity of the Malaysian mahseer (Tor tambroides Valenciennes: Cyprinidae) inferred from mitochondrial DNA and microsatellite analyses. BioMed Research International 2013: 170980. DOI:10.1155/2013/170980
Excoffier, L. & Lischer, H.E.L. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3): 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
Fahmi, Z., Nurdawati, S. & Supriyadi, F. 2013. Growth and exploitation status (Channa striata Bloch, 1793) in Lubuk Lampam Floodplains, South Sumatera. Indonesian Fisheries Research Journal 19(1): 1-7. DOI: 10.15578/ifrj.19.1.2013.17.
Fernandez-Aliaz, A., Razinkovas-Baziukas, A., Morkune, R., Ibanez-Martinez, H., Bacevicius, E., Munoz, I., Marcos, C. & Perez-Ruzafa, A. 2022. Recolonization origin and reproductive locations, but not isolation from the sea, lead to genetic structure in migratory lagoonal fishes. Marine Environmental Research 181: 105732.
Fu, F.X. 1997. Statistical test of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925
Galib, S.M., Rashid, M.A., Chaki, N., Mohsin, A. & Joadder, M.A.R. 2016. Seasonal variation and community structure of fishes in the Mahananda River with special reference to conservation issues. Journal of Fisheries 4 (1): 325-334. DOI: 10.17017/jfish.v4i1.2016.139
Gumiri, S., Ardianor, Syahrinudin, Anshari, G.Z., Komai, Y., Taki, K. & Tachibana, H. 2018. Seasonal yield and composition of an inland artisanal fishery in a humic floodplain ecosystem of Central Kalimantan, Indonesia. Biodiversitas 19(4): 1181-1185. DOI:10.13057/biodiv/d190401.
Hall, T. 2011. BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences 2(1): 60–61. https://doi.org/10.1017/S0317167100012865
Heggenes, J. & Røed, K.H. 2006. Do dams increase genetic diversity in brown trout (Salmo trutta)? Microgeographic differentiation in a fragmented river. Ecology of Freshwater Fish 15 (4): 366-375. DOI: 10.1111/j.16000633.2006.00146.x.
Henriques, R., Von Der Heyden, S., Lipinski, M.R., Du Toit, N., Kainge, P., Bloomer, P. & Matthee, C.A. 2016 Spatio-temporal genetic structure and the effects of longterm fishing in two partially sympatric offshore demersal fishes. Molecular Ecology. doi: 10.1111/mec.13890.
Herborg, L-M., Mandrak, N.E., Cudmore, B.C., & Maclsaac, H.J. 2007. Comparative distribution and invasion risk of snakehead (Channidae) and Asian carp (Cyprinidae) species in North America. Canadian Journal of Fisheries Science and Aquatic Science 64: 1723-1735. https://doi.org/10.1139/F07-130.
Higashi R, Tsukagoshi A, Kimura H, Kato K. 2011. Male dimorphism in a new interstitial species of the genus Microloxoconcha (Podocopida: Ostracoda). Journal of Crustacean Biology 31(1): 142-152. https://doi.org/10.1651/09-3234.1.
Hubert N, Delieu-Trottin E, Irisson JO, Meyer C, Planes S. 2010. Identifying coral reef ?sh larvae through DNA barcoding: A test case with the families Acanthuridae and Holocentridae. Molecular Phylogenetics and Evolution 55: 1195-1203. https://doi.org/10.1016/j.ympev.2010.02.023.
Irmawati, Tresnati, J., Nadiarti, Fachruddin, L., Arma, .NR. & Haerul, A. 2017. Identification of wild stock and the first generation (F1) of domesticated snakehead fish, Channa spp. (Scopoli 1777) using partial Cytochrome C Oxidase Subunit I (COI) gene. Jurnal Iktiologi Indonesia 17(2): 165–173. [Indonesia]
Jamaluddin, J.A.F., Pau, T.M. & Siti-Azizah, M.N. 2011. Genetic structure of the snakehead murrel, Channa striata (Channidae) based on the cytochrome c oxidase subunit I gene: Influence of historical and geomorphological factors. Genetics and Molecular Biology 34(1): 152–160. https://doi.org/10.1590/S1415-47572011000100026
Jeffery, N.W., Elias-Guttierrez, M., & Adamowicz, S.J. 2011. Species diversity and phylogeographical affinities of the Branchiopoda (Crustacea) of Churchill, Manitoba, Canada. PLoS ONE 6 (5): e18364. https://doi.org/10.1371/journal.pone.0018364.
Kochzius, M. & Nuryanto, A. 2008. Strong genetic population structure in the boring giant clam, Tridacna crocea, across the Indo-Malay Archipelago?: implications related to evolutionary processes and connectivity. Molecular Ecology 17: 3775–3787. https://doi.org/10.1111/j.1365-294X.2008.03803.x
Kuznetsov, A.N. 2022. How big can a walking fish be? A theoretical inference based on observations on four land-dwelling fish genera of South Vietnam. Integrative Zoology 17: 849-878. https://doi.org/10.1111/1749-4877.12599.
Lakra, W.S., Goswani, M., Gopalakrishnan, A., Singh, D.P., Singh, A. & Nagpure, N.S. 2010. Genetic relatedness among ?sh species of Genus Channa using mitochondrial DNA genes. Biochemical Systematics and Ecology 38: 1212-1219
Leyton, K.K.S., Dempson, B., Snelgrove, P.V.R., Duffy, S.J., Messmer, A.M., Peterson, I.G., Jeffrey, N.W., Kess, T., Horne, J.B., Salisbury, S.J., Ruzzante, D.E., Bentzen, P., Cote, D., Nugent, C.M., Ferguson, M.M., Leong, J.S., Koop, B.F. & Bradbury, I.R. 2020. Resolving fine-scale population structure and fishery exploitation using sequenced microsatellites in a northern fish. Evolutionary Applications 13:1055–1068.
Liu, B., Zhang, K., Zhu, K., Sha?, M., Gong, L., Jiang, L., Liu, L., Muhammad, F. & Lü, Z. 2020. Population genetics of Konosirus punctatus in Chinese coastal waters inferred from two mtDNA genes (COI and Cytb). Frontiers in Marine Sciences 7:534. doi:10.3389/fmars.2020.00534
Mohammed, M.A., Nuryanto, A. & Kusmintarsih, E.S. 2021. Genetic differentiation of dengue vector Aedes aegypti in the small geographical scale of Banyumas District, Indonesia based on Cytochrome Oxidase I. Biodiversitas 22(2): 675-683
Nei, M. & Jin, L. 1989. Variances of the average numbers of nucleotide substitutions within and between populations. Molecular Biology and Evolution, 6, 290–300
Nurdawati, S., Fahmi, Z. & Supriyadi, F. 2019. Parameter populasi ikan betook (Anabas testudineus Bloch, 1792) di ekosistem paparan banjir Sungai Musi, Lubuk Lapam. Berita Biologi Jurnal Ilmu-Ilmu Hayati 18 (1): 25-35. [Indonesian]
Nuryanto, A., Baghawati, D., Sastranegara, M.H., Rachmawati, F.N. 2020. Molecular Characterization of Anguilla from Cibereum and Sapuregel Rivers Segara Anakan Watersheds Cilacap, Central Java. Biogenesis 8(2): 145–156.
Nuryanto, A., Komalawati, N. & Sugiharto. 2019. Genetic diversity assessment of Hemibagrus nemurus from rivers in Java Island, Indonesia using COI gene. Biodiversitas 20(9): 2707–2717. https://doi.org/10.13057/biodiv/d200936
Nuryanto, A., Bhagawati, D., Abulias, M.A. & Indarmawan. 2015. Fauna ikan di Sungai Cikawung Kabupaten Cilacap Jawa Tengah. Jurnal Iktiologi Indonesia 15(1): 25-37. [Indonesia]
Nuryanto, A. & Kochzius, M. 2009. Highly restricted gene ?ow and deep evolutionary lineages in the giant clam Tridacna maxima. Coral Reefs 28: 607-619.
Padmavathi, P. & Srinu, G. 2019. Genetic Divergence and Phylogenetic Analysis of Fish Fauna from Lake Kolleru based on COI Sequences. Current Trends in Biotechnology and Pharmacy Vol. 13 (2) 173-189.
Parmaksiz, A. 2019. Population genetic diversity of yellow barbell (Carasobarbus luteus) from Kueik, Euphrates, and Tigris Rivers based on mitochondrial DNA D-loop sequences. Turkish Journal of Fisheries and Aquatic Sciences 20 (1): 79-86.
Parmaksiz, A. & Eksi, E. 2017. Genetic diversity of the cyprinid fish Capoeta trutta (Heckel, 1843) populations from Euphrates and Tigris rivers in Turkey based on mtDNA COI sequences. Indian Journal of Fisheries 64 (1): 18-22.
Pavlova, A., Beheregaray, L. B., Coleman, R., Gilligan, D., Harrisson, K. A., Ingram, B. A., Kearns, J., Lamb, A. M., Lintermans, M., Lyon, J., Nguyen, T. T. T., Sasaki, M., Tonkin, Z., Yen, J. D. L., & Sunnucks, P. 2017. Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: a call for assisted gene flow. Evolutionary Applications 10:531–550
Ratnasingham, S. & Hebert, P.D.N. 2013 A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System. PLoS ONE 8(8): e66213. doi:10.1371/journal.pone.0066213.
Ratnasingham, R. & Hebert, P.D.N. 2007. BOLD: The Barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes 7: 355-364.
Rogers, A.R. 1995. Genetic evidence for Pleistocene population expansion. Evolution 49:608–615
Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Osins S.E. & Sanchez-Gracia, A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34(12): 3299-3302. DOI: 10.1093/molbev/msx248.
Setijadji et al., 2008. Cenozoic island arc magmatism in Java Island (Sunda Arc, Indonesia): clues on relationships between geodynamics of volcanic centers and ore mineralization. Resource Geology 56(3): 267-292.
Setyaningrum, N. Nuryanto, A., Lestari, W. & Krismono. 2021. Spatial distribution and abundance of Channa striata Bloch, 1793 in Sempor Reservoir, Kebumen Central Java. E3S Web of Conferences 322: 01029.
Setyaningrum, N., Lestari, W., Krismono, & Nuryanto, A. 2022a. Genetically continuous populations of Striped Snakehead (Channa striata) in the Cingcingguling River fragmented by Sempor Reservoir, Central Java, Indonesia. Biodiversitas 23 (1): 222-230.
Setyaningrum, N., Lestari, W., Krismono, & Nuryanto, A. 2022b. Exploitation of striped snakehead (Channa striata) in Sempor Reservoir, Central Java, Indonesia: A proposed conservation strategy. Biodiversitas 23(7): 3584-3592.
Setyaningrum, N., Sugiharto, & Susatyo, P. 2020. Species richness and status guilds of fish in Sempor Reservoir Central Java. DEPIK 9(3): 411-420.
Song, L.M., Munian, K., Rashid, Z.A. & Bhassu, S. 2013. Characterisation of Asian snakehead murrel Channa striata (Channidae) in Malaysia: An insight into molecular data and morphological approach. The Scientific World Journal: 917506. https://doi.org/10.1155/2013/917506
Sukmanomon, S., Senanan, W. & Kapuscinski, A.R. 2012. Genetic diversity of feral populations of Nile Tilapia (Oreochromis niloticus) in Thailand and evidence of genetic introgression. Kasetsart Journal Natural Sciences 46(2): 200–216.
Supmee, V., Songrak, A., Suppapan, J. & Sangthong, P. 2021. Population genetic structure of ornate threadfin bream (Nemipterus hexodon) in Thailand. Tropical Life Sciences Research 32(1): 63–82. https://doi.org/10.21315/tlsr2021.32.1.4
Tajima, F. 1989. Statistical method for testing then mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
Tan, M.P., Jamsari, A.F.J., Muchlisin, Z.A. & Siti-Azizah, M.N. 2015. Mitochondrial genetic variation and population structure of the striped snakehead, Channa striata in Malaysia and Sumatra, Indonesia. Biochemical Systematics and Ecology 60: 99-105
Tan, M.P., Jamsari, A.F.J. & Siti-Azizah, M.N. 2012. Phylogeographic pattern of the striped snakehead, Channa striata in Sundaland: ancient river connectivity, geographical, and anthropogenic signatures. PLoS ONE 7(12): e52089. https://doi.org/10.1371/journal.pone.0052089
Tim, J., Kochzius, M., Madduppa, H.H., Neuhaus, A.I. & Dohna, T. 2017. Small scale genetic population structure of coral reef organisms in Spermonde Archipelago, Indonesia. Frontiers in Marine Science 4: 294. doi: 10.3389/fmars.2017.00294.
Tisthammer, K.H., Forsman, Z.H., Toonen, R.J. & Richmond, R.H. 2020. Genetic structure is stronger across human-impacted habitats than among islands in the coral Porites lobata. PeerJ 8: e8550.
Underwood, Z.E., Mandeville, E.G. & Walters, A.W. 2015. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming. Hydrobiologia 757: DOI 10.1007/s10750-015-2422-y.
Unmack, P.J. 2001. Biogeography of Australian freshwater fishes. Journal of Biogeography 28:1053-1089.
Vargas, S.M., Jensen, M.P., Ho, S.Y.W., Mobaraki, A., Broderick, D., Mortimer, J. A., Whiting, S.D., Miller, J., Prince, R.I.T., Bell, I.P., Hoenner, X., Limpus, C.J., Santos, F.R., & Fitz Simmons, N.N. 2016. Phylogeography, genetic diversity, and management units of hawksbill turtles in the Indo-Pacific. Journal of Heredity 107(3): 199-213.
Viret, A., Tsaparis, D., Tsigenopoulos, C.S., Berrebi, P., Sabatini, A., Arculeo, M., Fassatoui, C., Magoulas, A., Marengo, M., Morales-Nin, B., Caill-Milly, N. & Durieux, E.D.H. 2018. Absence of spatial genetic structure in common dentex (Dentex dentex Linnaeus, 1758) in the Mediterranean Sea as evidenced by nuclear and mitochondrial molecular markers. PLoS ONE 13 (9): e0203866. https://doi.org/10.1371/journal.pone.0203866
Yan, R-J., Zhang, G-R., Guo, X-Z., Ji, W., Chen, K-C., Zou, G-W., Wei, K-J. & Gardner, J.P.A. 2017. Genetic diversity and population structure of the northern snakehead (Channa argus Channidae: Teleostei) in central China: implications for conservation and management. Conservation Genetics. DOI: 10.1007/s10592-017-1023-x
Yudha, I.G.N.A.P., Arya, I.W. and Suryani, S.A.M.P. 2018. Study of species diversity identification, feeding habits and food habits of demersal fish in the lower reaches of the Yeh Sungi River, Tabanan, Bali. Gema Agro 23(2): 114-123. [Indonesian]
Zanella, R., Peixoto, J.O., Cardoso, F.F., Cardoso, L.L., Biegelmeyer, P., Cantao, M.E., Otaviano, A., Freitas, M.S., Caetano, A.R. & Ledur, M.C. 2016. Genetic diversity analysis of two commercial breeds of pigs using genomic and pedigree data. Genetics Selection and Evolution 48: 24.
Zhong, L., Song, C., Wang, M., Chen, Y., Qin, Q., Pan, J. & Chen, X. 2013. Genetic diversity and population structure of yellow cat?sh Pelteobagrus fulvidraco from ?ve lakes in the middle and lower reaches of the Yangtze River, China, based on mitochondrial DNA control region. Mitochondrial DNA 24 (5): 552-558.