Assessing ecological impacts of agricultural practices using frogs as bioindicators

##plugins.themes.bootstrap3.article.main##

AGUNG SIH KURNIANTO
ATI KUSMIATI
LENNY WIDJAYANTHI
DISTIANA WULANJARI
INDAH IBANAH
MUHAMMAD ARDIAN ARSY MAJID
DEA AYU PUSPITASARI
BAGUS PRIAMBODO

Abstract

Abstract. Kurnianto AS, Kusumawati A, Widjayanthi L, Wulanjari D, Ibanah I, Majid MAA, Puspitasari DA, Priambodo B. 2024. Assessing ecological impacts of agricultural practices using frogs as bioindicators. Biodiversitas 25: 3208-3215. The rapid intensification of agriculture, driven by the increasing global demand for food, heavily relies on chemical inputs like pesticides and synthetic fertilizers. While these practices enhance production, they pose significant challenges to ecological balance and environmental health. Biomonitoring efforts have been developed to detect and evaluate the chemical pollutants' impact on the environment, employing species like the rice field frog (Fejervarya limnocharis Gravenhorst 1829) as bioindicators. This study aimed to assess the reliability of rice field frogs' liver gravimetry and morphology as biomonitoring tools using various analytical methods. Samples were collected from rice fields managed both organically and conventionally to analyze liver weight, individual weight, and Snout-Vent Length (SVL). This analysis was conducted to understand the environmental effects on these physiological parameters. Statistical analysis revealed significant differences between the two management practices, indicating environmental conditions notably influence the frogs' physiological parameters, highlighting their potential as bioindicators for chemical pollutants. The findings underscore the need for further research to optimize biomonitoring methods for sustaining environmental health and agricultural practices. This study contributes to the development of more sophisticated and effective biomonitoring methods, supporting sustainable agricultural practices and environmental mitigation strategies.

##plugins.themes.bootstrap3.article.details##

References
Baharuddin ZM, Rusli N, Ramli L, Othman R, Yaman M. 2015. The diversity of birds and frogs species at Perdana Botanical Lake Garden, Kuala Lumpur, Malaysia. Alam Cipta 23 (7): 6256-6260. DOI: 10.1166/asl.2017.9247.
Blaise C, Gagné F, Burgeot T. 2017. Three simple biomarkers useful in conducting water quality assessments with bivalve mollusks. Environ Sci Pollut Res 24 (36): 27662-27669. DOI: 10.1007/s11356-016-6908-6.
Bronzwaer S, Kass G, Robinson T, Tarazona J, Verhagen H, Verloo D, Vrbos D, Hugas M. 2019. Editorial on food safety regulatory research needs 2030. Eur Food Saf Authority J 17 (7): 170622. DOI: 10.2903/j.efsa.2019.e170622.
Campoy-Diaz AD, Arribére MA, Guevara SR, Vega IA. 2018. Bioindication of mercury, arsenic and uranium in the apple snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): Bioconcentration and depuration in tissues and symbiotic corpuscles. Chemosphere 196: 196-205. DOI: 10.1016/j.chemosphere.2017.12.145.
Chiu YW, Wu JP, Hsieh TC, Liang SH, Chen CM, Huang DJ. 2014. Alterations of biochemical indicators in hepatopancreas of the golden apple snail, Pomacea canaliculata, from paddy fields in Taiwan. J Environ Biol 35 (4): 667-673. DOI: 10.1007/s11356-018-2092-1.
Ernst F, Alonso B, Colazzo M, Pareja L, Cesio V, Pereira A, Márquez A, Errico E, Segura AM, Heinzen H, Pérez-Parada A. 2018. Occurrence of pesticide residues in fish from south American rainfed agroecosystems. Sci Tot Environ 631-632: 169-179. DOI: 10.1016/j.scitotenv.2018.02.320.
Evans AE, Mateo-Sagasta J, Qadir M, Boelee E, Ippolito A. 2019. Agricultural water pollution: Key knowledge gaps and research needs. Curr Opinion Environ Sustain 36: 20-27. DOI: 10.1016/j.cosust.2018.10.003.
Felix-Nascimento G, Lucena RB, da Fonseca CF, da Silva IJS, de Moraes CCN, de Carvalho, CAC, de Moura GJB, Vieira FM, Ribeiro LB, de Oliveira J. B. 2024. Mineral profile and histopathological findings in the liver of white-lipped frog (Leptodactylidae) from the morphoclimatic domain of the Caatingas, Brazil. Environ Sci Pollut Res 31 (7): 10750-10765. DOI: 10.1007/s11356-024-31908-y.
Gaber HS, Ibrahim SA, El-Kasheif MA. 2015. Histopathological and histochemical changes in the liver of Bagrus bayad caused by environmental pollution. Toxicol Indust Health 31 (9): 852-861. DOI: 10.1177/0748233713484653.
Garbach K, Milder JC, DeClerck FAJ, Montenegro de Wit M, Driscoll L, Gemmill-Herren B. 2017. Examining multi-functionality for crop yield and ecosystem services in five systems of agroecological intensification. Intl J Agric Sustain 15 (1): 11-28. DOI: 10.1080/14735903.2016.1174810.
Hamza-Chaffai A. 2014. Usefulness of bioindicators and biomarkers in pollution biomonitoring. J Biotechnol 3 (1): 19-26. DOI: 10.6000/1927-3037.2014.03.01.4.
Hardersen S, La Porta G. 2023. Never underestimate biodiversity: How undersampling affects Bray-Curtis similarity estimates and a possible countermeasure. Eur Zool J 90 (2): 660-672. DOI: 10.1080/24750263.2023.2249007.
Karbasdehi VN, Dobaradaran S, Nabipour I, Ostovar A, Vazirizadeh A, Ravanipour M, Nazmara S, Keshtkar M, Mirahmadi R, Noorinezhad M. 2016. A new bioindicator, shell of Trachycardium lacunosum, and sediment samples to monitors metals (Al, Zn, Fe, Mn, Ni, V, Co, Cr and Cu) in marine environment: The Persian Gulf as a case. J Environ Health Sci Eng 14 (1): 1-12. DOI: 10.1186/s40201-016-0260-0.
Khan MM, Ali MW, Hafeez M, Fan ZY, Ali S, Qiu BL. 2021. Lethal and sublethal effects of emamectin benzoate on life-table and physiological parameters of citrus red mite, Panonychus citri. Exp Appl Acarol 85 (2-4): 173-190. DOI: 10.1007/s10493-021-00667-7.
Kurnianto AS, Baiti RN, Purnomo H. 2021. Macroinvertebrates reveal water quality differences in various agricultural management. J Trop Biodivers Biotechnol 6 (2): 1-11. DOI: 10.22146/JTBB.61507.
Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W, Wang T. 2015. Impacts of soil and water pollution on food safety and health risks in China. Environ Intl 77: 5-15. DOI: 10.1016/j.envint.2014.12.010.
Mie A, Andersen HR, Gunnarsson S, Kahl J, Kesse-Guyot E, Rembia?kowska E, Quaglio G, Grandjean P. 2017. Human health implications of organic food and organic agriculture: A comprehensive review. J Environ Health 16 (1): 1-22. DOI: 10.1186/s12940-017-0315-4.
Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. 2016. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front Public Health 4: 1-8. DOI: 10.3389/fpubh.2016.00148.
Othman MS, Khonsue W, Kitana J, Thirakhupt K, Mark GR, Kitana N. 2016. Morphometric and Gravimetric indices of two populations of rice frog (Fejervarya limnocharis) naturally exposed to different environmental cadmium levels. Jurnal Sains Kesihatan Malaysia 14 (02): 57-64. DOI: 10.17576/jskm-2016-1402-07.
Pimentel D, Peshin R. 2015. Integrated Pest Management: Pesticide Problems Vol. 3. Springer, New York. DOI: 10.1007/978-94-007-7796-5.
Podani J, Pavoine S, Ricotta C. 2018. A generalized framework for analyzing taxonomic, phylogenetic, and functional community structure based on presence-absence data. Mathematics 6 (11): 1-17. DOI: 10.3390/math6110250.
Pretty J, Bharucha ZP. 2014. Sustainable intensification in agricultural systems. Ann Bot 114 (8): 1571-1596. DOI: 10.1093/aob/mcu205.
Ricotta C, Podani J. 2017. On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecol Complex 31: 201-205. DOI: 10.1016/j.ecocom.2017.07.003.
Risely A, Gillingham MAF, Béchet A, Brändel S, Heni AC, Heurich M, Menke S, Manser MB, Tschapka M, Wasimuddin M, Sommer S. 2021. Phylogeny-and abundance-based metrics allow for the consistent comparison of core gut microbiome diversity indices across host species. Front Microbiol 12: 1-12. DOI: 10.3389/fmicb.2021.659918.
Saputro PB, Putra AD, Setiawan I, Setiadi T. 2019. Potential suitable habitat distribution for two endemic and highly threatened species of Leptophryne (Amphibia; Bufonidae) in Java. Zoo Indonesia 28 (2): 76-85. DOI: 10.52508/zi.v28i2.4097.
Schmutz S, Sendzimir J. 2018. Aquatic Ecology Series Riverine Ecosystem Management Science for Governing Towards a Sustainable Future. Springer, Switzerland. DOI: 10.1007/978-3-319-73250-3.
Sievers M, Hale R, Swearer SE, Parris KM. 2019. Frog occupancy of polluted wetlands in urban landscapes. Conserv Biol 33 (2): 389-402. DOI: 10.1111/cobi.13210.
?i?man T, Keskin MÇ, Dane H, Adil ?, Geyiko?lu F, Çolak S, Canpolat E. 2021. Marsh frog (Pelophylax ridibundus) as a bioindicator to assess pollution in an agricultural area. Pakistan J Zool 53 (1): 337-349. DOI: 10.17582/JOURNAL.PJZ/20190103130130.
Slaby S, Marin M, Marchand G, Lemiere S. 2019. Exposures to chemical contaminants: What can we learn from reproduction and development endpoints in the amphibian toxicology. Environ Pollut 248: 478-495. DOI: 10.1016/j.envpol.2019.02.014.
Strong R, Martin FL, Jones KC, Shore RF, Halsall CJ. 2017. Subtle effects of environmental stress observed in the early life stages of the Common frog, Rana temporaria. Sci Rep 7: 1-13. DOI: 10.1038/srep44438.
Temiz Ö. 2020. Biopesticide emamectin benzoate in the liver of male mice: evaluation of oxidative toxicity with stress protein, DNA oxidation, and apoptosis biomarkers. Environ Sci Pollut Res 27 (18): 23199-23205. DOI: 10.1007/s11356-020-08923-w.
Tittonell P. 2014. Ecological intensification of agriculture-sustainable by nature. Curr Opinion Environ Sustain 8: 53-61. DOI: 10.1016/j.cosust.2014.08.006.
Waddy SL, Merritt VA, Hamilton-Gibson MN, Aiken DE. 2010. Effect of emamectin benzoate on the molt cycle of ovigerous American lobsters Homarus americanus is influenced by the dosing regimen. Aquat Biol 11 (1): 47-52. DOI: 10.3354/ab00299.
Wassens S, Hall A, Spencer J. 2017. The effect of survey method on the detection probabilities of frogs and tadpoles in large wetland complexes. Mar Freshw Res 68 (4): 686-696. DOI: 10.1071/MF15183.
World Bank Group. 2024. World Development Indicators. Data Catalog. https://datacatalog.worldbank.org/search/dataset/0037712
Xiao JJ, Wang F, Ma JJ, Xu X, Liao M, Fang QK, Cao HQ. 2021. Acceptable risk of fenpropathrin and emamectin benzoate in the minor crop Mugua (Chaenomeles speciosa) after postharvest processing. Environ Pollut 276: 116716. DOI: 10.1016/j.envpol.2021.116716.

Most read articles by the same author(s)