Comparative physiological activity and productivity of two local West Timor (Indonesia) maize in response to t'sen, row, and monoculture cropping patterns

##plugins.themes.bootstrap3.article.main##

YOHANNIS HARRY DIMU-HEO
DIDIK INDRADEWA
EKA TARWACA SUSILO PUTRA
BENITO HERU PURWANTO

Abstract

Abstract. Dimu-Heo YH, Indradewa D, Putra ETS, Purwanto BH. 2024. Comparative physiological activity and productivity of two local West Timor (Indonesia) maize in response to t'sen, row, and monoculture cropping patterns. Biodiversitas 25: 1718-1728. T'sen is a traditional cropping pattern practiced in West Timor, where farmers plant maize, cowpeas, and pumpkins together in one hole. Field research was carried out to compare the productivity and physiological activity of maize grown in monoculture, t'sen, and row cropping patterns. The research followed a split-plot design with four replications. The main plot consisted of monoculture, t'sen, and row cropping patterns, while the subplots included local maize varieties: Kupang and TTS. The results showed that the t'sen cropping pattern did not cause any differences in stomatal activity, chlorophyll properties, transpiration rate, and photosynthesis rate, resulting in productivity that was not significantly different from monoculture. In contrast, the row cropping pattern led to an increase in the width of the stomatal opening but caused a decrease in the rate of transpiration and photosynthesis, resulting in lower productivity compared to monoculture. Additionally, the research found the productivity of the Kupang variety was higher than the TTS variety. Furthermore, both cropping patterns resulted in higher total protein yields due to cowpea and pumpkin fruit production compared to monoculture, with the t'sen showing significantly higher than the row cropping pattern.

##plugins.themes.bootstrap3.article.details##

References
Ahmad I, Zhu G, Zhou G, Song X, Ibrahim MEH, Salih EGI. 2022. Effect of N on growth, antioxidant capacity, and chlorophyll content of sorghum. Agronomy 12:501. DOI: 10.3390/agronomy12020501.
Ahmed A, Din AMU, Aftab S, Titriku JK, Ahmed S et al 2021. Physiological and nutritional significance of potassium application under sole and intercropped maize (Zea mays L). Italian Journal of Agronomy 16: 1737. DOI: 10.4081/ija.2021.1737.
Ayele HM. 2020. Evaluation of the effect of maize-legume intercropping on soil moisture improvement in arid area of Bena-Tsemay district, South Omo zone, Southern Ethiopia. Int. J. Agril. Res. Innov. Tech. 10(1): 80-86. DOI: 10.3329/ijarit.v10i1.48097.
Basuki T, de-Rosari B. 2017. Pemanfaatan kearifan lokal dan teknologi pertanian mendukung pembangunan pertanian wilayah In: Pasandaran E, Syakir M, Heriawan R, Yufdy MP (Eds). Pembangunan Pertanian Wilayah Berbasis Kearifan Lokal dan Kemitraan. IAARD Press. 63-88. Jakarta. [Bahasa Indonesia]
Bertolino LT, Caine RS, Gray JE. 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. Front. Plant Sci. 10:225. DOI: 10.3389/fpls.2019.00225.
Bo PT, Bai Y, Dong Y, Shi H, Htet MNS et al. 2022. Influence of different harvesting stages and cereals–legume mixture on forage biomass yield, nutritional compositions, and quality under loess plateau region. Plants 11: 2801. DOI: 10.3390/plants11202801.
Brownlee C. 2018. Stomatal physiology: Cereal successes. Current Biology 28: R551-R553. DOI: /10.1016/j.cub.2018.03.055/
Buckley TN. 2019. How do stomata respond to water status? New Phytologist 224:221-36. DOI: 10.1111/nph.15899.
da Silva AJ, Filho JRM, Sales CRG, de Matos Pires RC, Machado EC. 2018. Source-sink relationships in two soybean cultivars with indeterminate growth under water deficit. Bragantia Campinas 77(1): 23-35. DOI: 10.1590/1678-4499.2017010.
Dimu-Heo YH, Indradewa D, Putra ETS, Purwanto BH. 2022. Growth and yield of maize in t’sen, a local wisdom of planting in one planting hole, typical cropping pattern of West Timor's, Indonesia. Biodiversitas 23(5): 2502-2511. DOI: 10.13057/biodiv/d230530.
Driesen E, Van den Ende W, De Proft M, Saeys W. 2020. Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy 10. 1975. DOI: 10.3390/agronomi10121975.
Evans JD. 1996. Straightforward Statistics for The Behavioral Sciences. Brooks/Cole Pub. Co., Pacific Grove, California.
Elsaid SM, Elmorshedy MA, Galal AH, Abdel-Motagally FMF, Abdullah MAM. 2019. Effect of intercropping maize with cowpea on the yield and its quality. Assiut J. Agric. Sci. 50(3): 39-47. DOI: 10.21608/ajas.2019.52648.
Fan H, Yin W, Zhao C, Yu A, Fan Z et al. 2022. Photophysiological mechanism of dense planting to increase the grain yield of Iitercropped maize with nitrogen-reduction application in arid conditions. Agronomy 12:2994. DOI: 10.3390/agronomy12122994
Fan X, Zhou X, Chen H, Tang M, Xie X. 2021. Cross-talks between macro- and micronutrient uptake and signaling in plants. Front. Plant Sci. 12:663477. DOI: 10.3389/fpls.2021.663477.
Fan Y, Chen J, Cheng Y, Raza MA, Wu X, Wang Z et al. 2018. Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system. PLoS ONE 13(5): e0198159. DOI: 10.1371/journal.pone.0198159
Fan Y, Wang Z, Liao D, Raza MA, Wang B et al. 2020. Uptake and utilization of nitrogen, phosphorus, and potassium as related to yield advantage in maize-soybean intercropping under different row configurations. Nature Scientific Reports 10:9504. DOI: 10.1038/s41598-020-66459-y
Faralli M, Lawson T. 2019. Natural genetic variation in photosynthesis: an untapped resource to increase crop yield potential? The Plant Journal 101:518-528. DOI: 10.1111/tpj.14568.
Fornari EZ, Gaviraghi L, Basso CJ, Pinheiro MVM, Vian AL, Santi AL. 2020. Relationship between photosynthetic pigments and maize production under nitrogen sources. Pesquisa Agropecuária Tropical 50:e63661. DOI: 10.1590/1983-40632020v5063661.
Hendry GAF, Price AH. 1993. Stress indicators: Chlorophyll and carotenoids. In: Hendry GAF, Grime JP (eds) Methods in Comparative Plant Ecology. A Laboratory Manual. Chapman & Hall, London.
Hisse IR, D'Andrea KE, Otegui ME. 2019. Source-sink relations and kernel weight in maize inbred lines and hybrids: Responses to contrasting nitrogen supply levels. Field Crops Res. 230: 151-159. DOI: 10.1016/j.fcr.2018.10.011.
Kermah M, Franke AC, Adjei-Nsiah S, Ahiabor BDK, Abaidoo RC, Giller EK. 2018. N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of northern Ghana. Agriculture, Ecosystems and Environment 261: 201-210. DOI: 10.1016/j.agee.2017.08.028.
Lawson T, Vialet-Chabrand S. 2019. Speedy stomata, photosynthesis, and plant water use efficiency. New Phytologist 221: 93-98. DOI: 10.1111/nph.15330.
Liu J, Zhang J. 2017. Effect of nitrogen on photosynthetic pigments of relay strip intercropping soybean under drought stress. In. Jiang ZY (eds). Advances in Engineering Research Series; Proceedings of the 2017 3rd International Forum on Energy, Environment Science and Materials (IFEESM). Shenzhen, 25-26 November 2017.
Matheus R, Basri M, Rompon MS, Neonufa N. 2017. Strategi pengelolaan pertanian lahan kering dalam meningkatkan ketahanan pangan di Nusa Tenggara Timur. Partner 22 (2): 529-541. [Indonesia]
Ndiso JB, Chemining’wa GN, Olubayo FM, Saha HM. 2017. Effect of cropping system on soil moisture content, canopy temperature, growth and yield performance of maize and cowpea. Int.J. of Agric. Sci. 7(3): 1271-1281.
Ngapo TM, Bilodeau P, Arcand Y, Charles MT, Diederichsen A et al. 2021. Historical indigenous food preparation using produce of the three sisters' intercropping system. Foods 10: 524. DOI: 10.3390/foods10030524.
Novak V, Vidovic J. 2003. Transpiration and nutrient uptake dynamics in maize (Zea mays L). Ecological Modelling 166: 99-107. DOI: 10.3390/foods10030524.
Palaniappan, SP. 1985. Cropping System in the Tropic: Principles and Management. Willey Eastern Limited and Tamil Nadu Agricultural University. India.
Perez-Hernandez RG, Jesús M, Cach-Perez, Aparicio-Fabre R, Van Der Wal H, Rodríguez-Robles U. 2021. Physiological and microclimatic effects of different agricultural management practices with maize. Botanical Sciences 99(1): 132-148. DOI: 10.17129/botsci.2640.
Pierre HMJ, Kinama JM, Olubayo FM, Wanderi SW, Muthomi JW, Nzuve FM. 2018. Effect of intercropping maize-soybean on grain quality traits in Kenya. J. of Agric. Sci. 10(2): 341-351. DOI: 10.5539/jas.v10n2p341.
Qamar-Uz-Zaman, Malik MA. 2000. Ricebean (Vigna umbellata) productivity under various maize-ricebean intercropping systems. Int. J. Agri. Biol. 2(3): 255-257.
Raza MA, Khalid MHB, Zhang X, Feng LY, Khan I et al. 2019. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Scientific Reports 9:4947. DOI: 10.1038/s41598-019-41364-1.
Ren H, Qi H, Zhao M, Zhou W, Wang X et al. 2022. Characterization of source-sink traits and carbon translocation in maize hybrids under high plant density. Agronomy 12: 961. DOI: 10.3390/agronomy12040961.
Ren Y, Zhang L, Yan M et al. 2021. Effect of sowing proportion on above- and below-ground competition in maize-soybean intercrops. Nature Scientific Reports 11:15760. DOI: 10.1038/s41598-021-95242-w.
Seebauer JR, Singletary GW, Krumpelman PM, Ruffo ML, Below FE. 2010. Relationship of source and sink in determining kernel composition of maize. Journal of Experimental Botany 61(2): 511-519. DOI: 10.1093/jxb/erp324.
Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S et al. 2018. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci. 9:1705. DOI: 10.3389/fpls.2018.01705.
Silva GSF, de Andrade Júnior AS, Cardoso MJ, de Araújo Neto RB. 2020. Soil water dynamics and yield in maize and Brachiaria ruziziensis intercropping. Pesq. Agropec. Trop. 50, e59809. DOI: 10.1590/1983-40632020v5059809.
Su BY, Song YX, Song C, Cui L, Yong TW, Yang WY. 2014. Growth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest China. Photosynthetica 52(3): 332–340. DOI: 10.1007/s11099-014-0036-7
Teshome S. 2019. Review on strategy of developing intercropping practices. Int. J. Curr. Res. Aca. Rev. 7(1): 61-67. DOI: 10.7176/JNSR.
Yin W, Chai Q, Zhao C, Yu A, Fan Z et al. 2020. Water utilization in intercropping: A review. Agricultural Water Management 241: 106335. DOI: 10.1016/j.agwat.2020.106335.
Zhang L, Liang Z, He X, Meng Q, Hu Y, Schmidhalter U et al. 2020. Improving grain yield and protein concentration of maize (Zea mays L.) simultaneously by appropriate hybrid selection and nitrogen management. Field Crops Res. 249: 107754. DOI: 10.1016/j.fcr.2020.107754.
Zhang X, Huang G, Zhao Q. 2014. Differences in maize physiological characteristics, nitrogen accumulation, and yield under different cropping patterns and nitrogen levels. Chilean J. of Agri. Res. 74(3): 326-332. DOI: 10.4067/S0718-58392014000300011.
Zhao Y, Fan Z, Hu F, Yin W, Zhao C, Yu A, Chai Q. 2019. Source-to-sink translocation of carbon and nitrogen is regulated by fertilization and plant population in maize-pea intercropping. Front. Plant Sci. 10:891. DOI: 10.3389/fpls.2019.00891.
Zelitch I. 1982. The close relationship between net photosynthesis and crop yield. BioScience 32(10): 796-802.

Most read articles by the same author(s)