Antibacterial and biosurfactant activity of endophytic bacteria isolated from mangrove plant in Lamongan, Indonesia

##plugins.themes.bootstrap3.article.main##

FATIMAH
NAZIL DWI RAHAYUNINGTYAS
ALIFAH NASTITI
DELA DWI ALAWIYAH
RICO RAMADHAN
ALMANDO GERALDI
JUNAIRIAH

Abstract

Abstract. Fatimah, Rahayuningtyas ND, Nastiti A, Alawiyah DD, Ramadhan E, Geraldi A, Junairiah. 2024. Antibacterial and biosurfactant activity of endophytic bacteria isolated from mangrove plant in Lamongan, Indonesia. Biodiversitas 25: 3035-3042. This study aims to determine the antibacterial and biosurfactant activity of 61 endophytic bacteria from mangrove plants in Kutang Lamongan Beach. Antibacterial screening of supernatant of endophytic bacteria was performed using the disc diffusion method against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. The most potent isolate was identified using 16s rRNA. The chemical compounds of the most potent isolate were identified using GC-MS analysis. The data were analyzed descriptively. Biosurfactant activity was also performed on the most potential isolate. All the isolates showed inhibitory zones against E. coli and S. aureus. Isolate LMG-2 produced the highest antimicrobial activity, averaging 9.57±0.4 mm against E. coli and 8.87±0.36 mm against S. aureus. The biosurfactant activity of LMG-2 isolate produced a surface tension of 39.09+0.49 mN/m and emulsification activity of 65.03+0.03% against kerosene, 47.63+0.10% against crude oil and 46.53+0.27 to diesel. The isolate LMG-2 had 98,41% similarity with the Bacillus amyloliquefaciens strain NBRC 15535 with a query cover of 100%. The biosurfactant extract contains 9-octadecenoic acid methyl ester, (E)-, 9,12-octadecadienoic acid (Z, Z) methyl ester, and 9,12,15-octadecadienoic acid methyl ester. These compounds, known as Fatty Acid Methyl Esters (FAMEs), were integral components of biosurfactants, surface-active agents produced by microorganisms.

##plugins.themes.bootstrap3.article.details##

References
Afzal I, Shinwari ZK, Sikandar S & Shahzad S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res 221: 36-49. DOI: 10.1016/j.micres.2019.02.001.
Agada R, Usman WA, Shehu S & Thagarki D. 2020. In vitro and in vivo inhibitory effects of Carica papaya seed on ?-amylase and ?-glucosidase enzymes. Heliyon 6 (3). DOI: 10.1016/j.heliyon.2020.e03618.
Akintunde TA, Abioye OP, Oyeleke SB, Boboye BE, & Ijah UJJ. 2015. Remediation of iron using rhamnolipid-surfactant produced by Pseudomonas aeruginosa. Res J Environ Sci 9: 169–177. DOI: 10.3923/rjes.2015.169.177.
Banat IM, Satpute SK, Cameotra SS, Patil R, & Nyayanit NV. 2014. Cost efective technologies and renewable substrates for biosurfactants’ production. Front in Microbiol 38 (3): 1–18. DOI: 10.3389/fmicb.2014.00697.
Baran A, Kwiatkowska A, Potocki L. 2023. Antibiotics and bacterial resistance—a short story of an endless arms race. Int J Mol Sci 24: 5777. DOI: 10.3390/ijms24065777.
Bibi F, Ullah I, Alvi SA, Bakhsh SA, Yasir M, Al-Ghamdi AAK & Azhar EI. 2017. Isolation, diversity, and biotechnological potential of rhizo and endophytic bacteria associated with mangrove plants from Saudi Arabia. Gen and Mol Res 16 (2). DOI: 10.4238/gmr16029657.
Boottanun, Patcharaporn C, Potisap JG, Hurdle & Sermswan RW. 2017. Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. AMB Express 7:16. DOI: 10.1186/s13568-016-0302-0.
Chalasani AG, Dhanarajan G, Nema S, Sen R & Roy U. 2015. An antimicrobial metabolite from Bacillus sp.: Significant activity against pathogenic bacteria including multidrug-resistant clinical strains. Front. Microbiol. 6: 1335. DOI: 10.3389/fmicb.2015.01335.
Chaudhry VS, Sharma K, Bansal & Pati PB. 2017. Glimpse into the genomes of rice endophytic bacteria: Diversity and distribution of Firmicutes. Front Microbiol (7): 105. DOI: 10.3389/fmicb.2016.02115.
Chen Ming-Sheng., Li F, Chen X, Huang Z, Yan X & Li Tuo. 2021. Jiella mangrovi sp. nov., a novel endophytic bacterium isolated from leaf of Rhizophora stylosa. Antonie van Leeuwenhoek. 114: 1633–1645. DOI: 10.1007/s10482-021-01629-0.
Chokshi A, Sifri Z, Cennimo D & Horng H. 2019. Global contributors to antibiotic resistance. J Glob Inf Dis 11 (1): 36. DOI: 10.4103/jgid.jgid_110_18.
Cruz AG, Mtz-Enríquez AI, Díaz-Jiménez L, Ramos-González R, Valdés JAA, Flores MEC, Martínez JLH, and Ilyina A. 2020. Production of fatty acid methyl esters and bioactive compounds from citrus wax. Waste Manag 1102: 48-55. DOI: 10.1016/j.wasman.2019.10.021.
Dat TTH, Ha DV, Oanh PTT, Nhi NPK, Anh HLT, Quy PT & Nhung NTA. 2022. The study on biological activity and molecular docking of secondary metabolites from Bacillus sp. isolated from the mangrove plant Rhizophora apiculata Blume. Reg Stud Mar Sci 55: 102583. DOI: 10.1016/j.rsma.2022.102583.
Deshmukh C, Jagtap CB, Titus S & Kumar P. 2012. Isolation and characterization of fatty acid esters and phosphatidylethanolamine surfactants from a consortium of marine bacteria. Indian J. Geomarine Sci 41: 398–404. DOI: nopr.niscpr.res.in/handle/123456789/14871.
Dimki? S, Stankovi? & Nišavi? M. 2017. The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Front Microbiol 8. DOI: 10.3389/fmicb.2017.00925.
Farias BCS, Hissa DC, do Nascimento CTM. 2018. Cyclic lipopeptide signature as fingerprinting for the screening of halotolerant Bacillus strains towards microbial enhanced oil recovery. Appl Microbiol Biotechnol 102 (3): 1179–1190. DOI: 10.1007/s00253-017-8675-9.
He M & Ding N-Z. 2020. Plant unsaturated fatty acids: Multiple roles in stress response. Front Plant Sci 11: 562785. DOI: 10.3389/fpls.2020.562785.
Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, & Umar S. 2013. Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int Biodeterior Biodegrad 81: 28–34. DOI: 10.1016/j.ibiod.2012.11.012.
Irawan B, Fatimah, Pratiwi IA, Affandi M, Ketut W, Lilik B P & Soedarti T. 2019. Development of mangrove healthy condition (mhc) index based on their symbiotic organisms. Eco Env and Cons 37-42.
Jia LV, Da R, Cheng Y, Tuo X, Wei J, Jiang K, Monisayo AO & Han B. 2020. Mechanism of antibacterial activity of Bacillus amyloliquefaciens C-1 lipopeptide toward anaerobic Clostridium difficile. BioMed Res Int 3104613. DOI: 10.1155/2020/3104613.
Johnson GH, Fritsche K. 2012. Effect of dietary linoleic acid on markers of inflammation in healthy persons: a systematic review of randomized controlled trials. J Acad Nutr Diet 112 (7): 1029–1041.e10415. DOI: 10.1016/j.jand.2012.03.029.
Kandel SL, Joubert PM, & Doty SL. 2017. Bacterial endophyte colonization and distribution within plants. Microorganisms 5: 1-26. DOI: 10.3390/microorganisms5040077.
Kolli KS, Sai KE, Suneetha J & Ratna Kumar PK. 2021. Evaluation of antimicrobial activity of Sesuvium portulacastrum L. and Excoecaria agallocha L. Int J Pharm Sci Res 12 (2): 904-909. DOI : 10.13040/IJPSR.0975-8232.12(2).904-909.
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y & Zhou X. 2022. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 114117. DOI: 10.1016/j.ejmech.2022.114117.
Mazumder K, Nabila A, Aktar A & Farahnaky A. 2020. Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of australian lupin species: A Comprehensive Substantiation. Antioxidants 9 (4). DOI: 10.3390/antiox9040282.
Morehead MS & Scarbrough C. 2018. Emergence of global antibiotic resistance. Primary care: clinics in office practice 45(3): 467-484.
Mulligan CN, Sharma SK, & Mudhoo A. 2014. Biosurfactants: research trends and applications. CRC Press, London.
Ndlovu T, Rautenbach M, Vosloo JA, Khan S & Khan W. 2017. Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant. AMB Express 7:108. DOI: 10.1186/s13568-017-0363-8.
Pande SS, Jain R, Bhardwaj P, Thakur A, Kumari M, Bhushan S & Kumar S. 2022. Plant probiotics–endophytes pivotal to plant health. Microbiol Res 127148. DOI: 10.1016/j.micres.2022.127148.
Parthipan P, Preetham E, Machuca LL, Rahman PKSM, Murugan K dan Rajasekar A. 2017. Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front Microbiol 8: 193. DOI: 10.3389/fmicb.2017.00193.
Purnawati A & Nirwanto H. 2021. Biodiversity of endophytic bacteria from egg plant in lowland. 5th International Seminar of Research Month 2020. NST Proceedings 1-9. DOI: 10.11594/ nstp.2021.0934.
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. 2023. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 11: 1946. DOI: 10.3390/ healthcare11131946.
Sari M, Afiati F, Kusharyoto W. 2015. Potency of oil sludge bacteria as a producer of biosurfactant and antimicrobial agents. Prosiding Seminar Nasional Biodiversitas Indonesia 1 (1): 85-88. DOI: 10.13057/psnmbi/m010113 [Indonesian].
Saxena, Neha, Goswami, Abhishek, Dhodapkar PK, Nihalani MC & Mandal A. 2019. Bio-based surfactant for enhanced oil recovery: Interfacial properties, emulsification and rock-fluid interactions. J Pet Sci Eng. 176: 299-311. ISSN 0920-4105. DOI: 10.1016/j.petrol.2019.01.052.
Singh M, Kumar A, Singh R, Pandey KD. 2017. Endophytic bacteria: a new source of bioactive compounds. Biotech 7 (5):315. DOI: 10.1007/s13205-017-0942-z.
Singh R & Chaturvedi P. 2019. Phytochemical characterization of rhizome, fruit, leaf and callus of Rheum emodi wall using gc-ms. Pharmacogn J 11 (3): 617-623. DOI: 10.5530/pj.2019.11.99.
Sudarmono P, Wibisana A, Listriyani LW & Sungkar S. 2019. Characterization and synergistic antimicrobial evaluation of lipopeptides from Bacillus amyloliquefaciens isolated from oil-contaminated soil. Int J Microbiol 3704198. DOI: 10.1155/2019/3704198.
Tan LTH, Chan KG, Chan CK, Khan TM, Lee LH & Goh B H. 2018. Antioxidative potential of a Streptomyces sp. MUM292 isolated from mangrove soil. Biomed Res Int 2018 article ID 4823126. DOI: 10.1155/2018/4823126.
Thi Mo L, Irina P, Natalia S, Irina N, Lenar A, Andrey F, Ekaterina A, Sergey A & Olga P. 2022. Hydrocarbons biodegradation by Rhodococcus: Assimilation of hexadecane in different aggregate states. Microorganisms 10: 1594. DOI: 10.3390/ microorganisms10081594.

Most read articles by the same author(s)

<< < 1 2 3 4