Potential biocontrol agent of indigenous Bacillus sp. EG6.4: Molecular identification, larvicidal toxicity, and mechanism of actions

##plugins.themes.bootstrap3.article.main##

SALAMUN
RIZKY DANANG SUSETYO
FARAH AISYAH NAFIDIASTRI
RIZKI AMALIAH ZAIN
ROSSY PERMATA SARI
ALMANDO GERALDI
FATIMAH
NI’MATUZAHROH

Abstract

Abstract. Salamun, Susetyo RD, Nafidiastri FA, Zain RA, Sari RP, Geraldi A, Fatimah, Ni’matuzahroh. 2022. Potential biocontrol agent of indigenous Bacillus sp. EG6.4: Molecular identification, larvicidal toxicity, and mechanism of actions Biodiversitas 23: 5431-5438. This research was carried out for molecular identification, as well as the determination and mechanism of action of larvicidal toxicity of Bacillus sp. EG6.4 isolated from breeding sites of Aedes aegypti from Gresik, East Java, Indonesia. Bacillus sp. EG6.4 was a Gram-positive endospore-forming bacteria. Molecular species identification using 16S rRNA gene sequencing showed that isolate had 97.89% similarity with Bacillus mojavensis. The isolate showed larvicidal toxicity against A. aegypti larvae. The lethal concentration 50% (LC50) values ??at 24 and 48hours exposure were 8.99±1.01 ×107 cells/mL and 8.43±1.01 ×107 cells/mL, respectively, while lethal time 50% (LT50) value was 11.9±1.1 hours. Production of chitinolytic enzymes or biosurfactants, chitinolytic and hemolytic assays were conducted to determine the larvicidal mechanism. As a result, Bacillus sp. EG6.4 showed hemolytic, but not chitinolytic activity, indicating its potency to produce biosurfactants. Transmission Electron Microscopy (TEM) result showed that isolate had oval-shaped endospores located subterminal with massive-shape parasporal inclusions. The detection of srfA-D gene showed that isolate produced surfactin biosynthesis thioesterase. Thus, Bacillus sp. EG6.4 produced biosurfactant that potentially to be developed as a biocontrol agent for disease vectors and plant pathogens.

##plugins.themes.bootstrap3.article.details##

References
Aboul-Soud MAM, Al-Amri MZ, Kumar A, Al-Sheikh YA, Ashour AE, El-Kersh TA. 2019. Specific cytotoxic effects of paraspora crystal proteins isolated from native Saudi Arabian Bacillus thuringiensis strains against cervical cancer cells. Molecules 24,506: 1-16. DOI: 10.3390/molecules24030506
Adeniji AA, Loots DT, Babalola OO. 2019. Bacillus velezensis: Phylogeni, useful applications, and avenues for exploitation. Appl. Microb. Biotech. 103: 3669-3682, DOI: https://doi.org/10.1007/s00253-019-09710-5
Aramideh S, Shahram M, Abbas H, Ghassemi-Kahrizeh LE. 2016. Isolation, toxicity, and detection of Cry genes Bacillus thuringiensis isolates from West-Azerbaijan Province, Iran. J. Entomol. Zool. Stud. 4(6): 111-116. DOI: https://www.entomoljournal.com/archives/2016/vol4issue6/PartB/3-6-80-127.pdf
Arora N, Ahmad T, Rajagopal R, Bhatnagar RK. 2003. A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1, Biochem. Biophys. Res. Commun 307: 620–625. DOI: 10.1016/s0006-291x(03)01228-2.
Bacon CW and Hinton DM. 2002. Endophytic and biological control potential of Bacillus mojavensis and related species. Biological Control 23: 274–284. DOI: 10.1006/bcon.2001.1016
Bais HP, Fall R, Vivanco JM. 2004. Biocontrol of Bacillus subtilis against infection of rabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134: 307-319 DOI: 10.1104/pp.103.028712
Benelli G., Jeffries CL, Walker, T. 2016. Biological control of mosquito vectors: past, present, and future. Insects 7(52): 1-18. DOI: 10.3390/insects7040052
Berekaa MM and Ezzeldin MF. 2018. Exopolysaccharide from Bacillus mojavensis DAS10-1: production and characterization mahmoud. Journal of Pure and Applied Microbiology 12(2): 633-640. DOI: https://dx.doi.org/10.22207/JPAM.12.2.21
Blacutt AA, Mitchell TR, Bacon CW, Gold SE. 2016. Bacillus mojavensis RRC101 lipopeptides provoke physiological and metabolic changes during antagonism against Fusarium verticillioides. MPMI 29(9): 713–723. DOI: http://dx.doi.org/10.1094/MPMI-05-16-0093-R
Boyce R, Lenhart A, Kroeger A, Velayudhan R, Roberts B, Horstick O. 2013. Bacillus thuringiensis israelensis for the control of dengue vectors: systematic literature review, Trop. Med. and Int. Health 18(5): 564–577. DOI: 10.1111/tmi.12087. Epub 2013 Mar 26.
Brown T. 2016. A Gene cloning and DNA analysis: An introduction. Seventh Edition. Wiley Blackwell.
Camacho-Millan R, Aguilar-Medina EM, Quesada H, Medina-Contresas O, Patino-Lopes G, Cardenas-Cota HM, Ramos-Payan R. 2017. Characterization of Cry toxin from authocthonus Bacillus thuringiensis isolated from Mexico. Bol Med Hosp Infant Mex.74(3): 193-199. DOI: 10.1016/j.bmhimx.2017.03.002
Camehele I, Elshafie HS, Caputo L, Sakr SH, Feo VD. 2019. Bacillus mojavensis: biofilm formation and biochemical investigation of its bioactive metabolites. Journal of Biological Research 92: 8296. DOI: 10.4081/jbr.2019.8296
Carrillo PG, Mardaraz C, Pitta-Alvarez SI, Giulietti AM. 1996. Isolation and selection of biosurfactant-producing bacteria. World J Microbiol Biotechnol 12(1), 82-84. DOI: 10.1007/BF00327807
Chimkhan N, Thammasittirong SNR, Roytrakul S, Krobthong S, and Thammasittirong A. 2022. Proteomic response of Aedes aegypti larvae to Silver/Silver Chloride Nanoparticles synthesized using Bacillus thuringiensis subsp. israelensis metabolites. Insects, 13, 641. DOI: https://doi.org/10.3390/insects13070641
Das A and Mukherjee AK. 2006. Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains. Acta Tropica 97(2): 168-173. DOI: https://doi.org/10.1016/j.actatropica.2005.10.002
de Maagd RA, Weemen-Hendriks M, Molthoff JW, Naimov S. 2003. Activity of wild-type and hybrid Bacillus thuringiensis ?-endotoxins against Agrotis ipsilon. Arch Microbiol. 179: 363–367. DOI:10.1007/s00203-003-0543-6
El-kersh TA. Ashraf MA, Al-sheikh YA, Tripet F, Ibrahim MA, Metwalli AAM. 2016. Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae. Parasites & Vectors 9: 1-14. DOI: 10.1186/s13071-016-1922-6
Fatchiyah, Arumingtyas EL, Widyarti S, Rahayu S. 2011. Biologi molekuler, prinsip dasar analisis (Molecular biology, basic principles of analysis). Erlangga: Jakarta.
Fira D, Dimkic I, Beric T, Lozo J, Stankovic. 2018. Biological control of plant pathogens by Bacillus Species. Journal of Biotechnology 285: 44-55. DOI: 10.1016/j.jbiotec.2018.07.044.
Florez AM, Suarez-Barrera MO, Morales GM, Rivera KV, Orduz S, Ochoa R, Guerra D, Muskus C. 2018. Toxic activity, molecular modeling and docking simulations of Bacillus thuringiensis Cry11 toxin variants obtained via DNA shuffling. Frontiers in Microbiology 9, 2461: 1-14. DOI: 10.3389/fmicb.2018.02461
Gama ZP, Yanuwiadi B, Kurniati TH. 2010. Strategi pemberantasan nyamuk aman lingkungan: Potensi Bacillus thuringiensis isolat Madura sebagai musuh alami nyamuk Aedesaegypti (Environmentally safe mosquito eradication strategy: Potential of Bacillus thuringiensis Madura isolate as natural enemy of Aedes aegypti mosquito). Jurnal Pembangunan dan Alam Lestari 1(1): 1-10. DOI: http://jpal.ub.ac.id/index.php/jpal
Geetha I, and Manonmani AM. 2010, Surfactin: A novel mosquitocidal biosurfactant produced by Bacillus subtilis subsp. subtilis (VCRC B471) and influence of abiotic factors on its pupicidal efficacy. Lett Appl Microbiol 51: 406-412. DOI: https://doi.org/10.1111/j.1472-765X.2010.02912.x
Geetha I, Paily KP, Manonmani AM. 2012. Mosquito adulticidal activity of a biosurfactant produced by Bacillus subtilis subsp. subtilis. Pest Manag Sci 68, 1447–1450. DOI: 10.1002/ps.3324
Hmidet N, Ayed HB, Jacques P, Nasri M. 2017. Enhancement of surfactin and fengycin production by Bacillus mojavensis A21: application for diesel biodegradation. Hindawi BioMed Research International Article ID 5893123: 1-8. DOI: https://doi.org/10.1155/2017/5893123
Hossain MM, Begum M, Kim IH. 2015. Effect of Bacillus subtilis, Clostridium butyricum and Lactobacillus acidophilus endospores on growth performance, nutrient digestibility, meat quality, relative organ weight, microbial shedding and excreta noxious gas emission in broilers. Veterinarni Medicina 60(2): 77–86. DOI: 10.17221/7981-VETMED
Ibrahim MA, Griko N, Junker M, Bulla LA. 2011. Bacillus thuringiensis, A genomics and proteomics perspective, Bioengineered Bug, 1(1): 31-50. DOI: 10.4161/bbug.1.1.10519
Iftikhar S, Iqtedar M, Akhtar MS, Abdullah R, Kaleem A, Aihetasham A, Chaudhry A, Naz Sh, Sharif S. 2018. Bacillus mojavensis BTCB15-mediated synthesis of silver nanoparticles with mosquito larvicidal activity against vector-borne diseases, Nanosci Nanotechnol Let. 10(7): 943-949. DOI: https://doi.org/10.1166/nnl.2018.2731
Jasim B, Sreelakshmi S, Mathew J, Radhakrishnan EK. 2016. Identification of endophytic Bacillus mojavensis with highly specialised broad spectrum antibacterial activity. Biotech (6)187, 1-10. DOI: 10.1007/s13205-016-0508-5
Kumbar B, Mahmood R, Nagesha SN, Nagaraja MS, Prashant DG, Kerina OZ, Karosiya A, Chavan M. 2019. Field application of Bacillus subtilis isolated from controlling late blight disease of potato caused by Phytophthora infestans. Biocatalysis and Agricultural Biotechnology 22, 101366: 1-7. DOI:10.1016/j.bcab.2019.101366
Maeda ME, Mizuki Y, Nakamur T, Hatano, Ohba M. 2000. Recovery of Bacillus thuringiensis from marine sediments of Japan. Current Microbiology 40: 418-442. DOI: 10.1007/s002840010080
Mani C, Selvakumari J, Han Y, Jo Y, Thirugnanasambantham K, Sundarapandian S, Poopathi S. 2017. Molecular characterization of mosquitocidal toxin (Surface Layer Protein, SLP) from Bacillu scereus VCRC B540. Appl. Biochem. and Biotech. 184(4): 1094–1105. DOI: 10.1007/s12010-017-2602-5
Manonmani AM, Geetha I, Bhuvaneswari S. 2011. Enhanced production of mosquitocidal cyclic lipopeptide from Bacillus subtilis subsp. subtilis. Ind. J. Med. Res. 134: 476-482. DOI: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237246/pdf/IJMR-134-476.pdf
Melo ALA, Soccrol VT, Soccrol CS. 2016. Bacillus thuringiensis : Mechanism of action, resitance, and new aplications : a Review. Critical Reviews in Biotechnology 36-Issue 2: 317-326. DOI: 10.3109/07388551.2014.960793
Merzendorfer H and Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206: 4393– 4412. https://doi.org/10.1242/jeb.00709
Mounia YA, Chaouche NK, Dehimat L, Bataiche I, Ali KH, Cawoy H, Thonart P. 2014. Antifungal activity and bioactive compounds produced by Bacillus mojavensis and Bacillus subtilis. Afr J Microb Res 8(6), 476-484. DOI: 10.5897/AJMR2013.6327
Nafidiastri FA, Susetyo RD, Nurhariyati T, Supriyanto A, Geraldi A, Ni’matuzahroh, Fatimah, Salamun. 2021. Biosurfactant activity of indigenous Bacillus sp. ES4.3 isolated from endemic breeding sites of dengue hemorrhagic fever vector in Surabaya, East Java, Indonesia. BIODIVERSITAS 2(12): 5375-5381. DOI: 10.13057/biodiv/d221219
Nair K, Al-Thani R, Al-Thani D, Al-Yafei F, Ahmed T, Jaoua S. 2018. Diversity of Bacillus thuringiensis strains from Qatar as shown by crystal morphology, delta-endotoxins and Cry gene content. Frontiers in Microbiology 9, 708: 1-10. https://doi.org/10.3389/fmicb.2018.00708
Park HW, Bideshi DK, Federici BA. 2010. Properties and applied use of the mosquitocidal bacterium, Bacillus sphaericus. Journal of Asia-Pacific Entomology 13: 159-168. DOI: 10.1016/j.aspen.2010.03.002.
Pearson WR. 2014. An introduction to sequence similarity (homology) searching. Curr Protoc Bioinformatics: 1-9. DOI: 10.1002/0471250953.bi0301s42
Poopathi S and Abidha S. 2013. Mosquitocidal bacterial toxins (Bacillus sphaericus and Bacillus thuringiensis serovar israelensis): mode of action, cytopathological effects and mechanism of resistance. Journal of Physiology and Pathophysiology 1(3): 22-38. DOI: https://academicjournals.org/journal/JPAP/article-full-text-pdf/ED79882634
Postelnicu, T. 2011. Probit Analysis. Romanian Academy, Romania. DOI: 10.1007/978-3-642-04898-2_461
Pratiwi EK, Samino S, Gama ZP, Nakagoshi N. 2013. Uji toksisitas Bacillus thuringiensis asal kota Nganjuk terhadap larva Aedes aegypti (Toxicity assay of Bacillus thuringiensis from Nganjuk City against Aedes aegypti larvae). Jurnal Biotropika 1(4): 171-176. DOI: https://biotropika.ub.ac.id/index.php/biotropika/article/view/172
Promega protocol. 2018. Wizard® Genomic DNA Purification Kit. Technical Manual. 1-19. DOI: https://www.promega.com/~/media/files/resources/protocols/technical%20manuals/0/wizard%20genomic%20dna%20purification%20kit%20protocol.pdf
Salamun, Fatimah, Fauzi A, Praduwana SN, Ni’matuzahroh. 2021. Larvicidal toxicity and parasporal inclusion of native Bacillus thuringiensis BK5.2 against Aedes aegypti. J Basic Clin Physiol Pharmacol 32(4), 379–384. DOI: https://doi.org/10.1515/jbcpp-2020-0472
Salamun, Ni’matuzahroh, Fatimah, Maswantari MIF, Rizka MU, Nurhariyati T, Supriyanto A. 2020. Diversity of indigenous entomopathogenic bacilli from domestics breeding sites of dengue haemorrhagic fever vector based on the toxicity against Aedes aegypti Larvae. Eco. Env. & Cons. 26 (April Suppl. Issue): S21-S26. DOI: http://www.envirobiotechjournals.com/issue_articles.php?iid=321&jid=3
Shahcheraghi SH, Ayatollahi J, Lotfi M. 2015. Applications of Bacillus subtilis as an important bacterium in medical sciences and human life. Trop J Med Res 18: 1-4. DOI:10.4103/1119-0388.152530
Soberon M, Monnerat R, Bravo A. 2018. Mode of action of Cry toxins from Bacillus thuringiensis and resistance mechanisms. Microbial Toxins, Toxinology 2: 15-27. DOI: 10.1007/978-94-007-6449-1_28
Soleimany M, Moazamian E, Rasouli M. 2018. Effect of Bacillus thuringiensis paraspora toxin on stimulating of IL-2 and IL-5 cytokines production. Biological Journal of Microorganism 7(25): 100-109. DOI: https://doi.org/10.22108/bjm.2018.21738
Suryadi BF, Yanuwiadi B, Ardyati T, Suharjono. 2016. Evaluation of entomopathogenic Bacillus sphaericus isolated from Lombok beach area against mosquito larvae. Asian Pac. J. Trop. Biomed. 6(2): 148–154. DOI: 10.1016/J.APJTB.2015.10.013
Terra WR and Terra FC. 2005. Biochemistry of digestion, in: L.I. Gilbert, K. Iatrou, S.S. Gill (Eds.), Comprehensive molecular insect science biochemand mol biology, Elsevier Press Oxford, UK. 171– 224. DOI: 10.1016/B0-44-451924-6/00053-3
Thomas, MB. 2017. Biological control of human disease vectors: A perspective on challenges and opportunities. BioControl. 63: 61-69. DOI: 10.1007/s10526-017-9815-y
Wang SL, Lin TY, Yen YH, Liao HF, Chen YJ. 2006. Bioconversion of shellfish chitin waste for the production of Bacillus subtilis W-188 chitinase. Carbohydr Res 34: 2507–2515. DOI: 10.1016/j.carres.2006.06.027.
Zhao P, Quan C, Wang Y, Wang J, Fan S. 2014. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. J Bas Microbiol 54: 448–456. DOI: https://doi.org/10.1002/jobm.201200414
Wang X-T, Liu B, Li X-Z, Lin W, Li D-A, Dong H, Wang L. 2022. Biosurfactants produced by novel facultative-halophilic Bacillus sp. XT-2 with biodegradation of long chain n-alkane and the application for enhancing waxy oil recovery. Energy 240. DOI: https://doi.org/10.1016/j.energy.2021.122802

Most read articles by the same author(s)

1 2 3 > >>