Micromorphology, physicochemical parameters, and phytochemical screening of Chloranthus flavus D.T. Liu & G. Chen (syn. C. nervosus Collett & Hemsl.) from Vietnam

##plugins.themes.bootstrap3.article.main##

TRAN VAN CHEN
https://orcid.org/0000-0003-1430-231X
DUONG NGUYEN XUAN LAM
https://orcid.org/0000-0003-0302-2849
HOANG DAC KHAI
https://orcid.org/0000-0003-1890-4123
DUONG PHAN NGUYEN DUC
https://orcid.org/0000-0002-8143-3451
NGUYEN THI NGA
https://orcid.org/0009-0002-6316-4857
NGUYEN THI THU HIEN
https://orcid.org/0000-0001-5852-4331
TRAN THI THUY QUYNH
https://orcid.org/0009-0009-2996-1853

Abstract

Abstract. Chen TV, Lam DNX, Khai HD, Duc DPN, Nga NT, Hien NTT, Quynh TTT. 2024. Micromorphology, physicochemical parameters, and phytochemical screening of Chloranthus flavus D.T. Liu & G. Chen (syn. C. nervosus Collett & Hemsl.) from Vietnam. Biodiversitas 25: 846-858. Chloranthus flavus D.T. Liu & G. Chen (syn. C. nervosus Collett & Hemsl.) is a subshrub belonging to the family Chloranthaceae. Information on the anatomical structure and the powder features of C. flavus has not been noted. This study aimed to develop a monograph on the microscopic characteristics and physicochemical parameters of C. flavus, as well as a preliminary assessment of the phytochemical composition of this species. Anatomical characterizations of roots, stems, and leaves were performed using the iodine green-carmine staining method and then an optical microscope was used to observe the histology of these parts, similar to observing powder characteristics. Secondary metabolites were detected by chromogenic or precipitation reagents. Anatomically, the structural characteristics of the roots, stems, and leaves are similar to those of the Chloranthus species. Particularly, the root structure is characterized by six alternating xylem bundles, with six phloem bundles forming a ring. Polygonal to irregularly shaped cells of the upper epidermis and irregularly shaped ordinary cells, laterocytic and anomocytic stomata types, stomatal clusters, and the stomatal index (15.75±1.52%) of the lower epidermis were observed in leaves. Both powders found fragments of epidermal and parenchymatous cells, spiral xylem vessels, and scalariform xylem vessels. However, the root powder only observed solid-shaped sclereid cells, starch granules, starch clusters, and calcium oxalate crystals. The powders' moisture content, total ash, and acid-insoluble ash values all meet acceptable standards according to regulations on raw material purity. The whole C. flavus plant contains carotenoids, fatty acids, essential oils, flavonoids, tannins, coumarins, alkaloids, triterpenoids, amino acids, and carbohydrates. The current findings highlight the key characteristics for identifying C. flavus.

##plugins.themes.bootstrap3.article.details##

References
Alamgir ANM. 2017. Pharmacognostical Botany: Classification of Medicinal and Aromatic Plants (MAPs), Botanical Taxonomy, Morphology, and Anatomy of Drug Plants. In: Therapeutic Use of Medicinal Plants and Their Extracts. Prog Drug Res. Springer, Cham 1 (73): 177-293. DOI: 10.100­7/978-3-319-63862-1_6.
Anu S, Navas M, Dan M. 2020. Morpho-anatomical characterisation of the rhizomes of ten species of Curcuma L. (Zingiberaceae) from South India. J Spices Aromat Crops 29 (1): 38-47. DOI: 10.25081/josac.2020.v29.i1.6243.
Ariffin S, Azzeme AM, Hasbullah NI, Nawahwi MZ, Zemry IHB. 2023. Preliminary phytochemical screening of medicinal herb, SAMBAU PAYA (Chloranthus erectus). Mater Today: Proc 88 (2): 6-9. DOI: 10.1016/j.matpr.2023.01.365.
Carlquist S. 1992. Wood anatomy and stem of Chloranthus; summary of wood anatomy of Chloranthaceae, with comments on relationships, vessellessness, and the origin of monocotyledons. IAWA J 13 (1): 3-16. DOI: 10.1163/22941932-90000556.
Carpenter KJ. 2005. Stomatal architecture and evolution in basal angiosperms. Am J Bot 92 (10): 1595-1615. DOI: 10.3732/ajb.92.10.1595.
Chang-heng Z, Yong-xiang W, Zhi-bing W, Meng-xue W, Ya-li W, Tian-zhong C, Xing S. 2020. Effect of different drying methods on composition and biological activities of essential oils from Chloranthus spicatus flowers. Nat Prod Res Dev 32 (6): 1030-1037. DOI: 10.16333/j.1001-6880.2020.6.017.
Eklund H, Doyle JA, Herendeen PS. 2004. Morphological phylogenetic analysis of living and fossil Chloranthaceae. Intl J Plant Sci 165 (1): 107-151. DOI: 10.1086/380987.
FOC. 2024. Chloranthus Swartz. Flora of China. http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=106776
Guo YQ, Zhao JJ, Li ZZ, Tang GH, Zhao ZM, Yin S. 2016. Natural nitric oxide (NO) inhibitors from Chloranthus japonicus. Bioorg Med Chem Lett 26 (13): 3163-3166. DOI: 10.1016/j.bmcl.2016.04.081.
Iqbal E, Salim KA, Lim LB. 2015. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (airy shaw) from Brunei Darussalam. J King Saud Univ Sci 27 (3): 224-232. DOI: 10.1016/j.jksus.2015.02.003.
Kang J, Li N, Yuan Q, Wang Z. 2010. Morphological structure of vegetative organs and histochemical localization in Chloranthus japonicus Sieb. Acta Bot Boreal-Occid Sin 30 (12): 2412-2416.
Kaskoos RA, Ahamad J. 2014. Evaluation of pharmacognostic features of aerial parts of Andrographis paniculata Wall. J Pharmacogn Phytochem 3 (1): 1-5.
Kong HZ. 2001. Comparative morphology of leaf epidermis in the Chloranthaceae. Bot J Linn Soc 136 (3): 279-294. DOI: 10.100EVbojl.2001.0442.
Li N, Kang J, Yuan Q, Wang Z. 2011. Morphological structure of vegetative organs and histochemical localization in Chloranthus multistachys Pei. Plant Sci J 29 (4): 507-511.
Liu DT, Cai L, Chen G. 2019. Chloranthus flavus (Chloranthaceae), a new species from Guangxi, China. Phytotaxa 391 (4): 273-276. DOI: 10.11646/phytotaxa.391.4.6.
Liu YY, Li YZ, Huang SQ, Zhang HW, Deng C, Song XM, Wang W. 2022. Genus Chloranthus: A comprehensive review of its phytochemistry, pharmacology, and uses. Arab J Chem 2022: 104260. DOI: 10.1016/j.arabjc.2022.104260.
Lu YB, Huang ZP, Qin XM, Zhang Q. 2022. Combination of Chloranthus flavus into C. nervosus based on morphological and molecular evidence. Phytotaxa 564 (2): 230-238. DOI: 10.11646/phytotaxa.564.2.6.
Luan DT, Van Chen T, Nguyen DD, Truong QC, Thang KH, Nhi NTT, Triet NT. 2022. Morphological, physicochemical, and phytochemical characterization of Camellia dormoyana (Pierre) Sealy from Vietnam. Biodiversitas 23 (11): 5869-5883. DOI: 10.13057/biodiv/d231141.
Ministry of Health. 2017. Vietnamese Pharmacopoeia V. Medical Publishing House. Ha Noi, Vietnam.
Mrozek-Szetela A, Rejda P, Wi?ska K. 2020. A review of hygienization methods of herbal raw materials. Appl Sci 10 (22): 8268. DOI: 10.3390/app10228268.
Muyumba NW, Mutombo SC, Sheridan H, Nachtergael A, Duez P. 2021. Quality control of herbal drugs and preparations: The methods of analysis, their relevance and applications. Talanta Open 4: 100070. DOI: 10.1016/j.talo.2021.100070.
Nhi NTT, Chen TV, Lam DNX, Nguyen DD, Dinh QD, Linh NHK. 2023. Morphological and anatomical studies of Conamomum vietnamense NS. Lý & T.S. Hoang: An endemic plant from Vietnam. Biodiversitas 24 (9): 5022-5034. DOI: 10.13057/biodiv/d240946.
Nunes TD, Zhang D, Raissig MT. 2020. Form, development and function of grass stomata. Plant J 101 (4): 780-799. DOI: 10.1111/tpj.14552.
Osman AG, Raman V, Haider S, Ali Z, Chittiboyina AG, Khan IA. 2019. Overview of analytical tools for the identification of 3 adulterants in commonly traded herbs and spices. J AOAC Intl 102 (2): 376-385. DOI: 10.5740/jaoacint.18-0389.
POWO. 2024a. Chloranthaceae R.Br. ex Sims. Plants of the World Online. Kew Science. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:77126698-1.
POWO. 2024b. Chloranthus Sw. Plants of the World Online. Kew Science. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:7052-1
Segev R, Nannapaneni R, Sindurakar P, Kim H, Read H, Lijek S. 2015. The effect of the stomatal index on the net rate of photosynthesis in the leaves of Spinacia oleracea, Vinca minor, Rhododendron spp., Epipremnum aureum, and Hedera spp. J Emerg Investig 20: 1-5. DOI: 10.59720/15-005.
Srivastava S, Misra A. 2018. Quality Control of Herbal Drugs: Advancements and Challenges. In: Singh B, Peter K (eds). New Age Herbals: Resource, Quality and Pharmacognosy. Springer, Singapore 2018: 189-290. DOI: 10.1007/978-981-10-8291-7_10.
Thang TD, Dai DN, Ogunwande IA. 2016. Composition of essential oils from Chloranthus elatior and Ch. spicatus from Vietnam. Chem Nat Compd 52: 149-151. DOI: 10.1007/s10600-016-1575-x.
Tran CV, Vo TM, Bui PT, Duong DNP, Duong LXN, Dinh DQ, Hien NTT. 2023. Phytochemical screening, antioxidant activity and ?-glucosidase inhibitability of Bauhinia x blakeana Dunn. leaf and flower extracts from Vietnam. Trop J Nat Prod Res 7 (4): 2737-2743. DOI: 10.26538/tjnpr/v7i4.11.
Van Chen T, Lam DNX, Thong CLT, Nguyen DD, Nhi NTT, Triet NT. 2022. Morphological characters, pharmacognostical parameters, and preliminary phytochemical screening of Curcuma sahuynhensis Škorni?k. & NS. Lý in Quang Ngai Province, Vietnam. Biodiversitas 23 (8): 3907-3920. DOI: 10.13057/biodiv/d230807.
Wang AR, Song HC, An HM, Huang Q, Luo X, Dong JY. 2015. Secondary metabolites of plants from the genus Chloranthus: chemistry and biological activities. Chem Biodivers 12 (4): 451-473. DOI: 10.1002/cbdv.201300376.
Wang XJ, Yu SZ, Xin JL, Pan LL, Xiong J, Hu JF. 2022. Further terpenoids from the Chloranthaceae plant Chloranthus multistachys and their anti-neuroinflammatory activities. Fitoterapia 156: 105068. DOI: 10.1016/j.fitote.2021.105068.
WHO [World Health Organization]. 2011. Quality Control Methods for Medicinal Plant Materials. Geneva: WHO Press.
WHO [World Health Organization]. 2018. Fifty-second report of the WHO Expert Committee on Specifications for Pharmaceutical Preparations. WHO Technical Report Series, No. 1010.
Zhang M, Liu D, Fan G, Wang R, Lu X, Gu Y, Shi QW. 2016. Constituents from Chloranthaceae plants and their biological activities. Heterocyclic Commun 22 (4): 175-220. DOI: 10.1515/hc-2016-0084.
Zhuo ZG, Wu GZ, Fang X, Tian XH, Dong HY, Xu XK, Shen YH. 2017. Chlorajaponols A-F, sesquiterpenoids from Chloranthus japonicus and their in vitro anti-inflammatory and anti-tumor activities. Fitoterapia 119: 90-99. DOI: 10.1016/j.fitote.2017.04.009.

Most read articles by the same author(s)