Genetic diversity and connectivity of Red Snapper Lutjanus gibbus in the Papua Waters, Indonesia

##plugins.themes.bootstrap3.article.main##

BAYU PRANATA
RIDWAN SALA
https://orcid.org/0000-0003-1340-5341
ARADEA BUJANA KUSUMA
https://orcid.org/0000-0002-4220-3522
ABDUL HAMID A. TOHA
DEBORA CHRISTIN PURBANI
DANIEL FRIKLI MOKODONGAN
SIPRIYADI

Abstract

Abstract. Pranata B, Sala R, Kusuma AB, Toha AHA, Purbani DC, Mokodongan DF, Sipriyadi. 2024. Genetic diversity and connectivity of Red Snapper Lutjanus gibbus in the Papua Waters, Indonesia. Biodiversitas 25: 276-286. There is limited knowledge regarding the genetic connectivity and diversity of the Red Snapper (Lutjanus gibbus Forsskål, 1775) populations that inhabit Papua Waters, Indonesia. Thus, the current study attempted to ascertain the genetic characteristics, level of diversity and genetic connectivity of the L. gibbus population. We conducted genetic research on 38 L. gibbus specimens from five different places in Papua Waters. We analyzed the L. gibbus genetic characteristics, diversity and genetic connectivity using the Cytochrome C Oxidase subunit I (COI) gene as the genetic marker. There were 15 polymorphism sites in the COI gene sequence among L. gibbus individuals. Polymorphism occurs due to transversion and transition mutations. The COI gene fragment was translated, producing 188 amino acids composed of 19 different amino acids. A total of 13 distinct haplotypes were detected among the L. gibbus population residing in Papua Waters. The haplotype diversity (Hd=0.740) and nucleotide diversity (Pi=0.002) were relatively medium. The genetic structure study indicated that the 5 populations of L. gibbus in the Papua Waters had little genetic differentiation, as evidenced by a Fixation Index (Fst) of 0.018 (P-value 0.35386±0.01443). Based on this, the management of Red Snapper resources at these 5 locations must be carried out as a single unit.

##plugins.themes.bootstrap3.article.details##

References
Afriyie G, Wang Z, Dong Z, Larbi CA, Asiedu B, Guo Y. 2020. Complete mitochondrial genome and assembled DNA barcoding analysis of Lutjanus fulgens (Valenciennes, 1830) and its comparison with other Lutjanus species. Ecol Evol 10 (15): 7971-7980. DOI: 10.1002/ece3.6542.
Aguillon SM, Fitzpatrick JW, Bowman R, Schoech SJ, Clark AG, Coop G, Chen N. 2017. Deconstructing isolation-by-distance: The genomic consequences of limited dispersal. PLoS Genet 13 (8): e1006911. DOI: 10.1371/journal.pgen.1006911.
Allen GR, William TW, Mark VE. 2013. Two new species of snappers (Pisces: Lutjanidae: Lutjanus) from the Indo-West Pacific. J Ocean Sci Found 6: 33-51. DOI: 10.5281/zenodo.1036813.
Aloqalaa DA, Kowalski DR, B?a?zej P, Wnetrzak M, Mackiewicz D, Mackiewicz P. 2019. Ratio on the optimal genetic code graph partition. 10th International Conference on Bioinformatics Models, Methods and Algorithms. BIOSTEC 2019, Prague, 22-24 February 2019. DOI:10.5220/0007381000550065.
Ashfaq M, Paul DNH, Sajjadmirza M, Arif MK, Shahid M, Ghulam SS, Yusuf Z. 2015. Genetic diversity indices and neutrality tests (Fu’s Fs and Tajima’s D) in the mtCOI-5? (barcode) sequences of putative species in Bemisia tabaci complex from Pakistan and India. PLoS ONE 9 (5): 1-12. DOI: 10.1371/journal.pone.0104485.t002.
Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37-48. 10.1093/oxfordjournals.molbev.a026036.
Bemis KE, Girard MG, Santos MD, Carpenter KE, Deeds JR, Pitassy DE, Flores NAL, Hunter ES, Driskell AC, Macdonald III KS, Weigt, LA, Williams JT. 2023. Biodiversity of Philippine marine fishes: A DNA barcode reference library based on voucher specimens. Sci Data 10: 411. DOI: 10.1038/s41597-023-02306-9.
Bentley BP, Carrasco-Valenzuela T, Ramos EK, Pawar H, Arantes LS, Alexander A, Banerjee SM, Masterson P, Kuhlwilm M, Pippel M, Mountcastle J, Haase B, Uliano-Silva M, Formenti G, Howe K, Chow W, Tracey A, Sims Y, Pelan S, Wood J, Yetsko K, Perrault JR, Stewart K, Benson SR, Levy Y, Todd EV, Shaffer HB, Scott P, Henen BT, Murphy RW, Mohr DW, Scott AF, Duffy DJ, Gemmell NJ, Suh A, Winkler S, Thibaud-Nissen F, Nery MF, Marques-Bonet T, Antunes A, Tikochinski Y, Dutton PH, Fedrigo O, Myers EW, Jarvis ED, Mazzoni CJ, Komoroske LM. 2023. Divergent sensory and immune gene evolution in sea turtles with contrasting demographic and life histories. Proceed Natl Acad Sci 120 (7): 1-12. DOI: 10.1073/pnas.2201076120.
Bernatchez L, Wellenreuther M, Araneda C, Ashton DT, Barth JMI, Beacham TD, Maes GE, Martinsohn JT, Miller KM, Naish KA, Ovenden JR, Primmer CR, Suk HY, Therkildsen NO, Withler RE. 2017. Harnessing the power of genomics to secure the future of seafood. Trends Ecol Evol 32 (9): 665-680. DOI: 10.1016/j.tree.2017.06.010.
Bravington MV, Skaug HJ, Anderson EC. 2016. Close-kin mark-recapture. Stat Sci 31 (2): 259-274. DOI: 10.1214/16-STS552.
Casey J, Jardim E, Martinsohn JTH. 2016. The role of genetics in fisheries management under the E.U. common fisheries policy. J Fish Biol 2016 (89): 2755-2767. DOI:10.1111/jfb.13151.
Chang CH, Shao KT, Lin HY, ChiuYC, Lee MY, Liu SH, Lin PL. 2016. DNA barcodes of the native ray-finned fishes in Taiwan. Mol Ecol Resour 17 (4): 796-805. DOI: 10.1111/1755-0998.12601.
Chu C, Rizman-Idid M, Chong VC. 2013. Phylogenetic relationships of selected genera of Lutjanidae inferred from mitochondrial regions, with a note on the taxonomic status of Pinjalo pinjalo. Cienc Mar 39 (4): 349-361. DOI: 10.7773/cm.v39i4.2287.
DeBoer TS, Naguit MRA, Erdmann MV, Ablan-Lagman MCA, Ambariyanto, Carpenter KE, Toha AHA, Barber PH. 2014. Concordance between phylogeographic and biogeographic boundaries in the Coral Triangle: Conservation implications based on comparative analyses of multiple giant clam species. Bull Mar Sci 90 (1): 277-300. DOI: 10.5343/bms.2013.1003.
Druon JN, Fiorentino F, Murenu M, Knittweis L, Colloca F, Osio C, Mérigot B, Garofalo G, Mannini A, Jadaud A, Sbrana M, Scarcella G, Tserpes G, Peristeraki P, Carlucci R, Heikkonen J. 2015. Modelling of European hake nurseries in the Mediterranean Sea: An ecological niche approach. Prog Oceanogr 130: 188-204. DOI: 10.1016/j.pocean.2014.11.005.
Dwifajri S, Ricardo FT, Bayu P, Aradea BK. 2022. Molecular phylogeny of grouper of Epinephelus genus in Jayapura, Papua, Indonesia inferred from Cytochrome Oxidase I (COI) gene. Biodiversitas 23 (3): 1449-1456. DOI: 10.13057/biodiv/d230332.
Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10 (3): 564-567. DOI: 10.1111/j.1755-0998.2010.02847.x.
Fonseca EM, Pelletier TA, Decker SK, Parsons DJ, Carstens BC. 2023. Pleistocene glaciations caused the latitudinal gradient of within-species genetic diversity. Evol Lett 7 (3): 331-338. DOI: 10.1093/evlett/qrad030.
Gandra M, Assis J, Martins MR, Abecasis D. 2021. Reduced global genetic differentiation of exploited marine fish species. Mol Biol Evol 38 (4): 1402-1412. DOI: 10.1093/molbev/msaa299.
Halim LJ, Rahim I, Mahboob S, Al-Ghanim KA, AMAT A, Naim DMD. 2022. Phylogenetic relationships of the commercial Red Snapper (Lutjanidae sp.) from three marine regions. J King Saud Univ Sci 34 (2): 101756. DOI: 10.1016/j.jksus.2021.101756.
Hedgecock D, Barber PH, Edmands S. 2007. Genetic approaches to measuring connectivity. Oceanography 20 (3): 70-79 DOI: 10.5670/oceanog.2007.30.
Hou G, Chen WT, Lu HS, Cheng F, Xie SG. 2018. Developing a DNA barcode library for perciform fishes in the South China Sea: Species identification, accuracy and cryptic diversity. Mol Ecol Resour 18 (1): 137-146. DOI: 10.1111/1755-0998.12718.
Hubert N, Meyer CP, Bruggemann HJ, Guerin F, Komeno RJ, Espiau B, Causse R, Williams JT, Planes S. 2012. Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNA-barcoding provides new support to the centre-of-overlap hypothesis. PLoS ONE 7 (3): e28987. DOI: 10.1371/journal.pone.0028987.
Iwatsuki Y, Tanaka F, Allen GR. 2015. Lutjanus xanthopinnis, a new species of Snapper (Pisces: Lutjanidae) from the Indo-west Pacific, with a redescription of Lutjanus madras (Valenciennes 1831). J Ocean Sci Found 17: 23-42. DOI: 10.5281/zenodo.1051774.
Jaonalison H, Durand J-D, Mahafina J, Valade P, Collet A, Cerqueira F, Ponton D. 2022. Application of DNA barcoding for monitoring Madagascar fish biodiversity in Coastal Areas. Diversity 14 (5): 377. DOI: 10.3390/d14050377.
Jenkins SR, Hawkins SJ. 2003. Barnacle larval supply to sheltered rocky shores: A limiting factor? Hydrobiologia 503 (1): 143-151. DOI: 10.1023/B:HYDR.0000008496.68710.22.
Kartavtsev YP, Sharina SN, Saitoh K, Imoto JM, Hanzawa N, Redin AD. 2014. Phylogenetic relationships of Russian Far Eastern flatfish (Pleuronectiformes, Pleuronectidae) based on two mitochondrial gene sequences, Co-1 and Cyt-b, with inferences in order phylogeny using complete mitogenome data. Mitochondrial DNA 27 (1): 1-12. DOI: 10.3109/19401736.2014.913139.
Klangnurak W, Anggara W, True J, Phinchongsakuldit J. 2016. Validation of microsatellite markers for Lutjanus russellii species complex. Walailak J Sci Technol 13 (7): 521-529.
Kling MM, Ackerly DD. 2020. Global wind patterns and the vulnerability of wind-dispersed species to climate change. Natl Clim Change 10 (9). DOI: 10.1038/s41558-020-0848-3.
Limmon G, Delrieu-Trottin E, Patikawa J, Rijoly F, Dahruddin H, Busson F, Steinke D, Hubert N. 2020. Assessing species diversity of Coral Triangle artisanal fisheries: A DNA barcode reference library for the shore fishes retailed at Ambon harbor (Indonesia). Ecol Evol 10 (7): 3356-3366. DOI: 10.1002/ece3.6128.
Moore B, Boris C. 2016. Identification Guide to The Common Coastal Food Fishes of the Pacific Island Region. Pacific Community, Noumea.
Muths D, Gouws G, Mwale M, Tessier E, Bourjea J. 2012. Genetic connectivity of the reef fish Lutjanus kasmira at the scale of the West Indian Ocean. Can J Fish Aquat Sci 69 (5): 842-853. DOI: 10.1139/F2012-012.
Ovenden JR, Berry O, Welch DJ, Buckworth RC, Dichmont CM. 2015. Ocean’s eleven: A critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish 16 (1): 125-159. DOI: 10.1111/faf.12052.
Peniston JH, Backus GA, Baskett ML, Fletcher RJ, Holt RD. 2023. Ecological and evolutionary consequences of temporal variation in dispersal. Ecography: 1-20. DOI: 10.1111/ecog.06699.
Pereira L, Cunha C, Amorim A. 2004. Predicting sampling saturation of mtDNA haplotypes: An application to an enlarged Portuguese database. Intl J Legal Med 118 (3): 132-136. DOI: 10.1007/s00414-003-0424-1.
Petit-Marty N, Liu M, Tan IZ, Chung A, Terrasa B, Guijarro B, Ordines F, Ramírez-Amaro S, Massutí E, Schunter C. 2022. Declining population sizes and loss of genetic diversity in commercial fishes: A simple method for a first diagnostic. Front Mar Sci 9: 872537. DOI: 10.3389/fmars.2022.872537.
Pineda J, Hare JA, Sponaugle S. 2007. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20 (3): 22-39. DOI: 10.5670/oceanog.2007.27.
Pinsky ML, Palumbi SR. 2014. Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23 (1): 29-39. DOI: 10.1111/mec.12509.
Pita A, Pérez M, Balado M, Presa P. 2014. Out of the Celtic cradle: The genetic signature of European hake connectivity in South-Western Europe. J Sea Res 93: 90-100. DOI: 10.1016/j.seares.2013.11.003.
Pranata B, Abdul HAT, Kolibongso D. 2020. Genetic of Panulirus Versicolor lobster in Cendrawasih Bay Papua and Lombok Waters West Nusa Tenggara. Jurnal Enggano 5 (2): 249-257. DOI: 10.31186/jenggano.5.2.249-257.
Pranata B, Mohamad F, Feni I, Abdul HAT, Jeni. 2018. Phylogeny of the spiny lobster Panulirus versicolor in Cenderawasih Bay, Papua, Indonesia. Aquac Aquar Conserv Legis Bioflux 11 (4): 1015-102.
Sala R, Aradea BK, Bayu P. 2023. Phylogenetic of Red Snapper (Lutjanidae) in Yapen Island Waters, Papua, Indonesia. Biodiversitas 24 (2): 716-723. DOI: 10.13057/biodiv/d240206.
Sala R, Aradea BK, Surianto B, Bayu P. 2022. Morphometrics diversity and phenotypic relationship of the Red Snapper (Lutjanus gibbus) in Northern Papua Waters. Egypt J Aquat Biol Fish 26 (5): 1211-1227. DOI: 10.21608/ejabf.2022.268123.
Sendell-Price AT, Tulenko FJ, Pettersson M, Kang D, Montandon M, Winkler S, Kulb K, Naylor GP, Phillippy A, Fedrigo O, Mountcastle J, Balacco JR, Dutra A, Dale RE, Haase B, Jarvis ED, Myers G, Burgess SM, Currie PD, Andersson L, Schart M. 2023. Low mutation rate in Epaulette Sharks is consistent with a slow rate of evolution in sharks. Nat Commun 14 (1): 6628. DOI: 10.1038/s41467-023-42238-x.
Snead AA, Tatarenkov A, Avise JC, Taylor DS, Turner B J, Marson K, Earley RL. 2023. Out to sea: Ocean currents and patterns of asymmetric gene flow in an intertidal fish species. Front Genet 14: 01-16. DOI: 10.3389/fgene.2023.1206543.
Souza ASD, Júnior EAD, Perez MF, Cioffi MB, Bertollo LAC, Garcia-Machado E, Vallinoto MNS, Jr PMG, Molina WF. 2019. Phylogeography and historical demography of two sympatric Atlantic Snappers: Lutjanus analis and L. jocu. Front Mar Sci 6: 545. DOI: 10.3389/fmars.2019.00545.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38 (7): 3022-3027. DOI: 10.1093/molbev/msab120.
Toha AH, Widodo N, Subhan B, Himawan MR, Tania C, Noor BA, Stewart BS, Madduppa H. 2016. Close genetic relatedness of whale sharks, Rhincodon typus in the Indo-Pacific region. Aquac Aquar Conserv Legis Bioflux 9 (3): 458-465. DOI: 10.5339/qproc.2016.iwsc4.31.
Toha AHA, Dailami M, Anwar S, Setiawan JB, Runtuboi F, Madduppa H. 2020. The genetic relationships and Indo-Pacific connectivity of Whale Sharks (Rhincodon typus) with particular reference to mitochondrial COI gene sequences from Cendrawasih Bay, Papua, Indonesia. Biodiversitas 21 (5): 2159-2171. DOI: 10.13057/biodiv/d210544.
Ward RD, Tyles SZ, Bronwyn HI, Peter RL, Paul DNH. 2005. DNA barcoding Australia’s fish species. Philos Trans Royal Soc Biol Sci 360 (1462): 1847-1857. DOI: 10.1098/rstb.2005.1716.
Xuereb A, Benestan L, Normandeau E, Curtis JMR, Bernatchez L, Fortin M-J. 2018. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol Ecol 27 (10): 2347-2364. DOI: 10.1111/mec.14589.
Yu X, Chen F, Chen Z, Wei P, Song X, Liu C, Liu T, Li X, Liu X. 2022. Genetic diversity and gene expression diversity shape the adaptive pattern of the aquatic plant Batrachium bungei along an altitudinal gradient on the Qinghai-Tibet plateau. Plant Mol Biol 111 (3): 275-290. DOI: 10.1007/s11103-022-01326-0.
Zhang G, Chen C, Lu W, Li J, Fang T, Yang K, Zhao X, Gao N, Liang Y. 2023. Genetic diversity and phylogeography of Taenioides cirratus in five geographical populations based on mitochondrial COI and Cytb gene sequences. J Appl Ichthyol 2023 (5): 1-9. DOI: 10.1155/2023/4459823.