Evaluation of proximate analysis and yield production of watermelon in Lampung, Indonesia




Abstract. Wahyudi A, Sari MF, Rajamin I, Arsri M. 2023. Evaluation of proximate analysis and yield production of watermelon in Lampung, Indonesia. Biodiversitas 24: 6010-6015. The breeding of watermelon plants is carried out to produce new superior varieties. This study aimed to test the moisture, fat, carbohydrate, ash, and vitamin contents, and the yield potential of a hybrid watermelon line (F1). The materials used were 6 hybrid watermelon and 2 commercial lines as control varieties. A randomized block design was adopted in this study and was analyzed by LSD test, dendrogram, and proximate analysis. The result showed that the 6 hybrid watermelon lines had high yield potential. Furthermore, the moisture content of the fruit of the WM 2110-1204 lines (92.24%) was higher than other lines. Proximate data analysis showed that the WM 2110-0616 line had a higher ash content (0.16%), and the carbohydrate content of the fruit of the WM 2110-0806 line (3.64%) was also higher. The vitamin C-vitamin content of the fruit of the WM 2110-0308 line (0.36 mg.g-1) was higher, while the 4 watermelon lines, namely WM 2110-0308, WM 2110-204, WM 2110-0806, and WM 2110-1606 had advantages in terms of skin color and striation, fruit sweetness level and weight. In a dendrogram analysis, qualitative characters were divided into two clusters, with clusters I and II containing 8 and 1 lines, respectively.


Association of Official Analytical Chemists (AOAC). 2010. Official Method of Analysis 18th ed. AOAC International, Washington DC.
Bertucci MB, Jennings KM, Monks DW, Schultheis JR, Perkins-Veazie P, Louws FJ, Jordan DL. 2018. Early season growth, yield, and fruit quality of standard and mini watermelon grafted onto several commercially available cucurbit rootstocks. Hort. Technology 28 (4): 459-469. DOI: 10.21273/HORTTECH04051-18.
Bhagyalekshmi TR, Gasti VD, Evor S, Gopali JB, Mastiholi AB, Kamble CS. 2020. Studies on correlation and path-coefficient analysis for yield and its contributing characters in watermelon (Citrullus lanatus (Thunb.) Mansf.). J Pharmacogn Phytochem 9 (3): 1909-1912. DOI: : https://dx.doi.org/10.22271/phyto.
Daryono BS, Subiastuti AS, Fatmadanni A, Sartika D. 2019. Phenotypic and genetic stability of new Indonesian melon cultivar (Cucumis melo L. ‘Melonia’) based on ISSR markers. Biodiversitas 20: 1069-1075. DOI: 10.13057/biodiv/d200419.
Dia M, Wehner TC, Hassell R, Price DS, Boyhan GE, Olson S, King S, Davis ER, Tolla GE. 2016. Genotype x environment interaction and stability analysis for watermelon fruit yield in the United States. Crop Sci 56: 1645–1661. DOI: 10.2135/cropsci2015.10.0625.
Dia M, Wehner TC, Perkins-Veazie P, Hassell R, Price DS, Boyhan GE, Olson SM, King SR, Davis AR, Tolla GE, Bernier J. 2016. Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments. Horticulture Research 3: 1-11. DOI: 10.18196/pt.v10i1.6936.
Emmanuel M, Kiddo M, Victor M. 2022. Influence of fertilization on growth and yield of onion under semi-arid conditions. International Journal of Vegetable Science 28 (4): 366-373. DOI:10.1080/19315260.2021.1977756.
Fall LA, Perkins-Veazie P, Ma G, McGregor C. 2019. QTLs associated with flesh quality traits in an elite× elite watermelon population. Euphytica 215 (2): 1-4. DOI:10.1007/s10681-019-2356-y.
Fila WA, Ifam EH, Johnson JT, Odey MO, Effiong EE, Dasofunjo K, Ambo EE. 2013. Comparative proximate compositions of watermelon (Citrullus lanatus), Squash (Cucurbita pepol) and Rambutan (Nephelium lappaceun). International Journal of Science and Technology 2 (1): 81-88. DOI: 10.12691/ajfn-6-2-1.
Gladvin G, Sudhakar G, Swathi V, Santhisri KV. 2017. Mineral and vitamin composition contents in watermelon peel (rind). Int.J.Curr.Microbiol.App.Sci. 5: 129-133. DOI:10.9734/afsj/2019/v11i430066.
Griffey C, Malla S, Brooks W, Seago J, Christopher A, Thomason W, Pitman R, Markham R, Vaughn M, Dunaway D, Beahm M. 2020. Registration of ‘Hilliard’ wheat. Journal of Plant Registrations 14 (3): 406-417. DOI: 10.1002/plr2.20073.
Gusmini G, Wehner TC. 2007. Heritability and genetic variance estimates for fruit weight in watermelon. Hort. Science 42 (6): 1332-1336. DOI:10.21273/HORTSCI.42.6.1332.
Hanan MA, Al-Sayed, Abdelrahman R, Ahmed. 2013. Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in a cake. Elsevier. Annals of Agricultural Science 58 (1): 83-95. DOI: 10.1016/j.aoas.2013.01.012.
Henshaw FO. 2008. Varietal differences in physical characteristics and proximate composition of cowpea (Vigna unguiculata). World Journal of Agricultural Sciences 4 (3): 302-306.
Johnson JT, Iwang EU, Hemen JT, Odey MO, Effiong EE, Eteng OE. 2012. Evaluation of anti-nutritional content of watermelon (Citrullus lanatus). Annals of Biological Research 3 (11): 5145-5150.
Kader AA. Flavor quality of fruits and vegetables. 2008. Journal of the Science of Food and Agriculture 88 (11): 1863-1868. DOI: 10.1002/jsfa.3293.
Kyriacou MC, Leskovar DI, Colla G, Rouphael Y. 2018. Watermelon and melon fruit quality: The genotypic and agro-environmental factors implicated. J.Scientia Horticulturae 234: 393-408. DOI: 10.1016/j.scienta.2018.01.032.
Kyriacou MC, Soteriou GA, Rouphael Y, Siomos AS, Gerasopoulos D. 2016. Configuration of watermelon fruit quality in response to rootstock?mediated harvest maturity and postharvest storage. Journal of the Science of Food and Agriculture 96 (7): 2400-2409. DOI: 10.1002/jsfa.7356.
Makful, Kuswandi, Sahlan, Andini M. 2019. Evaluation of the performance of some watermelon hybrid collections of Indonesian tropical fruit research. Jurnal Budidaya Pertanian 15 (2): 101-105. DOI: 10.30598/jbdp.2019.15.2.101. [Indonesian]
Mamman S, Musa OS, Sadiq AC, Saidu U, Opaluwa OD. 2022. Proximate and elemental analysis of dried watermelon (Citrullus lanatus) seeds. Sule Lamido University Journal of Science and Technology (SLUJST) 3 (1): 16-22.
Oseni OA and Okoye VI. 2013. Studies of phytochemical and antioxidant properties of the fruit of watermelon (Citrullis lanatus). Journal of Pharmaceutical and Biomedical Science 27 (27): 508-514.
Saidu U, Kamalu T, Suwaibatu M, Abubakar CS. 2021. Proximate analysis and mineral compositions of some cereals commonly sold in Kafin Hausa Market, Jigawa State, Nigeria. Dutse Journal of Pure and Applied Sciences 7(2a): 22-29.
Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, Bachlava E, Caldwell DG, Taylor CA, Seymour DK, White V. 2012. Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theoretical and applied genetics 125 (8): 1603-1618. DOI: 10.1007/s00122-012-1938-z.
Wahyudi A, Ariyani D, Ma G, Inaba R, Fukasawa C, Nakano R, Motohashi R. 2018. Functional analyses of lipocalin proteins in tomato. Plant Biotech 35 (4): 303-312. DOI: 10.5511/plantbiotechnology.18.0620a.
Wahyudi A, Fukazawa C, Motohashi R. 2020. The function of SlTILs and SlCHL under heat and oxidative stresses in tomato. Plant Biotech 37 (3): 335-341. DOI: 10.5511/plantbiotechnology.20.0422a.
Wahyudi A, Syukur M. 2021. Multi-location evaluation of yield component character and proximate analysis of cowpea grown in Lampung Province, Indonesia. Biodiversitas Journal of Biological Diversity 22 (10): 4246-4253. DOI: 10.13057/biodiv/d221015.
Yim O, Ramdeen KT. 2015. Hierarchical cluster analysis: Comparison of three linkage measures and application to psychological data. The Quantitative Methods for Psychology 11 (1): 8-21. DOI: https: 10.20982/tqmp.11.1.p008.