Effects of sublethal fipronil insecticide concentrations on fitness and abundance profile of endosymbiont microbial species Nilaparvata lugens

##plugins.themes.bootstrap3.article.main##

AWALUDDIN
DADANG
RULY ANWAR
GIYANTO

Abstract

Abstract. Awaluddin, Dadang, Anwar R, Giyanto. 2024. Effects of sublethal fipronil insecticide concentrations on fitness and abundance profile of endosymbiont microbial species Nilaparvata lugens. Biodiversitas 25: 998-1006. Fipronil is a widely used active ingredient for controlling Nilaparvata lugens Stal. (Hemiptera: Delphacidae), but the effect exerted on fitness ratio and composition of endosymbiont microbes remain unknown. Therefore, this study aimed to investigate effects of insecticide by assessing fitness ratio and bacterial composition of endosymbionts in N. lugens before and after applying sublethal fipronil concentrations. A pair of LC15-equivalent fipronil-treated imago were introduced into treatment pots planted with rice 30 days after transplanting. Additionally, N. lugens endosymbionts were identified using full-length primers 27F and 1492R targeting the 16S rRNA gene. The results showed that fipronil application increased the total number of nymphs and fitness ratio of N. lugens in both IR64 and ciherang rice varieties. Similar observations were obtained with erythromycin application, although the differences were not statistically significant compared to the control. Fipronil application tended to cause an insignificant increase in the percentage of hatched eggs, while samples lacking this treatment contained abundant quantities of an endosymbiont, Acinetobacter soli. After applying insecticide, a significant alteration occurred in the composition of endosymbionts, with a substantial increase in Delftia acidovorans and D. lacustris, which both contributed to the enhanced fitness and tolerance of N. lugens to fipronil. These results showed the intricate interactions between bacteria and insects, as well as the mechanisms underlying insecticide resistance, thereby providing valuable insights for the development of new pest management strategies.

##plugins.themes.bootstrap3.article.details##

References
REFERENCES
Adair K L, and Douglas A E. (2017). Making a microbiome the many determinants of host-associated microbial community composition. Curr. Opin. Microbiol. 35, 23–29. doi: 10.1016/j.mib.2016.11.002.
Adams AS, Aylward FO, Adams SM. 2013. Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol 79:3468–3475. doi.org/10.1128/AEM.00068-13.
Akami M, Ren X, Wang Y, Mansour A, Cao S, Qi X. 2022. Host fruits shape the changes in the gut microbiota and development of Bactrocera dorsalis (Diptera: Tephritidae) larvae. Int. J. Trop. Insect. Sci. 1–15. doi: 10.1007/s42690- 022-00733-6.
Behera BK; Chakraborty HJ, Patra B, Rout AK, Dehury B, Das BK, Sarkar DJ, Parida PK, Raman RK, Rao, AR, Rai A, Mohapatra T. 2020. Metagenomic analysis reveals bacterial and fungal diversity and their bioremediation potential from sediments of river Ganga and Yamuna in India. Frontiers in Microbiology, 11, 556136. doi:10.3389/fmicb.2020.556136.
Boon NJ, Goris P, DeVos W, Verstraete and EM Top. 2001. Genetic diversity among 3-chloroaniline and aniline degrading strains of the Comamonadaceae. Appl. Environ. Microbiol. 67:1107–1115. doi.org/10.1128/AEM.67.3.1107-1115.2001.
Cheng D, Guo Z, Riegler M. 2017. Gut symbiont enhances insecticide resistance in a signifcant pest, the oriental fruit fy Bactrocera dorsalis (Hendel). Microbiome 5:1–12. doi. org/10.1186/s40168-017-0236-z
Cutler GC. Ramanaidu K. Astatkie T and Isman MB. 2009. Green peach aphid, Myzus persicae (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin. Pest manag. Sci. 65:205-209. doi.org/10.1002/ps.1669.
De Almeida L G, de Moraes L A B, Trigo J R J R, Omoto C. 2017. The gut microbiota of insecticide-resistant insects houses insecticide degrading bacteria: A potential source for biotechnological exploitation. PLoS One 12:e0174754. doi: 10.1371/journal.pone.0174754.
De Coster W, D'Hert S, Schultz DT, Cruts M, van Broeckhoven C. 2018. Nano Pack visualizing and processing long read sequencing data Bioinformatics 34(15): 2666-2669. doi: 10.1093/bioinformatics/bty149
Dionisi D. 2014. Potential and limits of Biodegradation processes for the removal of organic xenobiotics from wastewaters. ChemBioEng Reviews, 1(2), 67–82. doi:10.1002/cben.201300008.
Diptaningsari D, Trisyono YA, Purwantoro A, Wijonarko A. 2019. Inheritance and Realized Heritability of Resistance to Imidacloprid in the Brown Planthopper, Nilaparvata lugens (Hemiptera: Delphacidae), From Indonesia. Journal of Economic Entomology. doi:10.1093/jee/toz090.
Dively GP, Embrey MS, Kamel A, Hawthorne, David J, Pettis, JS. 2017. Correction: Assessment of Chronic Sublethal Effects of Imidacloprid on Honey Bee Colony Health. PLOS ONE, 12(7), e0181297 doi:10.1371/journal.pone.0181297.
Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23:38–47. doi.10.111 1/j.1365-2435.2008.01442.x.
Eleftherianos I, Yadav S, Kenney E, Cooper D, Ozakman Y, Patrnogic J. 2017. Role of Endosymbionts in Insect Parasitic Nematode Interactions. Trends in Parasitology. S147149221730260X. doi:10.1016/j.pt.2017.10.004.
Gomes A F F, Omoto C, and Cônsoli F L. 2020. Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J. Pest Sci. 93, 833–851. doi: 10.1007/s10340-020-01202-0
Gong J T, Li Y, Li TP, Liang Y, Hu L, Zhang D, Zhou C Y, Yang C, Zhang X, Zha S S, Duan X Z, Baton LA, Hong X Y, Hoffmann A A, Xi Z. 2020. Stable introduction of plant virus inhibiting Wolbachia into planthoppers for rice protection. J Current Biology, 30(24): 4837-4845. e5. doi: 10.1016/ j.cub.2020.09.033.
Heinrichs EA, Mochida D. 1984. From secondary to majorp pest status the case of insecticides induced rice brown planthopper resurgence. Protection Ecology 7: 201–218.
Hoffmann DS, Kleinsteuber RH, Mueller and Babel W. 2001. Development and application of PCR primers for the detection of the tfd genes in Delftia acidovorans P4a involved in the degradation of 2,4-D. Acta Biotechnol. 21:321–331. doi.org/10.1002/1521-3846(200111)21:4<321::AID-ABIO321>3.0.CO;2-I.
Hoffmann DS, Muller RH, Kiesel B, Babel W. 1996. Isolation and characterization of an alkaliphilic bacterium capable of growing on 2,4-dichlorophenoxyacetic acid and 4-chloro-2- methylphenoxyacetic acid. Acta Biotechnol. 16 121–131. doi.org/10.1002/abio.370160205
Hubbard M, Hynes RK, Erlandson M, and Bailey KL. 2014. The biochemistry behind biopesticide efficacy. Sustain. Chem. Process. 2:18. doi.org/10.1186/s40508-014-0018-x
Itoh H, Tago K, Hayatsu M, and Kikuchi Y. 2018. Detoxifying symbiosis microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat. Prod. Rep. 35, 434–454. doi: 10.1039/c7np00051k
Jaenike J, Unckless R, Cockburn S N, Boelio L M, and Perlman S J. 2010. Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329, 212–215. doi: 10.1126/science.1188235
Kikuchi Y, Hayatsu M, Hosokawa T. Nagayama A, Tago K, and Fukatsu T. 2012. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. U. S. A. 109, 8618–8622. doi:10.1073/pnas.1200231109
Kikuchi Y, Tada A, Musolin DL. 2016. Collapse of insect gut symbiosis under simulated climate change. MBio 7: e01578-e1616. doi.org/10.1128/mBio.01578-16.
Kistler L, Ware R, Smith O, Collins M, Allaby RG. 2017. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Research, 45(11), 6310–6320. doi:10.1093/nar/gkx36.
Lee JB, Park KE, Lee SA et al (2017) Gut symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and vitellogenin gene expression. Dev Comp Immunol 69:12–22. doi.org/10.1016/j.dci.2016.11.019.
Lourthuraj A A, Hatshan M R, and Hussein DS. 2022. Biocatalytic degradation of organophosphate pesticide from the wastewater and hydrolytic enzyme properties of consortium isolated from the pesticide contaminated water. Environ. Res. 205:112553. doi: 10.1016/j.envres.2021.112553.
Martino ME, Joncour P, Leenay R .2018. Bacterial adaptation to the host’s diet is a key evolutionary force shaping Drosophila Lactobacillus symbiosis. Cell Host Microbe 24:109–119. doi:org/10.1016/j.chom.2018.06.001.
McCarthy BC, Magurran AE. 2004. Measuring biological diversity. J Torrey Bot Soc. 131(3): 277. doi:10.2307/4126959.
Muhammad A, Parimala GS, Amjad A, Muhammad IT, Muhammad I, Saqib B, Muhammad I, Gang L, Yong GZ, Zenqqiang Z. 2021. Soil metaphenomics a step forward in metagenomics. Archives of Agronomy and Soil Science. doi:10.1080/03650340.2021.1921743.
Natividad JM, Agus A, Planchais J. 2018. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab 28:737-749.e4. doi.org/10.1016/j.cmet.2018.07.001.
Nygaard AB, Tunsjø HS, Meisal R, Charnock C. 2020. A preliminary study on the potential of nanopore minion and llumina miseq 16S rRNA gene sequencing to characterize building-dust microbiomes Scientific Reports 10.1: 1-10. doi: 10.1038/s41598-020-59771-0.
Pavlidi N, Gioti A, Wybouw N. 2017. Transcriptomic responses of the olive fruit fy Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. Sci Rep 7:42633. doi :org/10.1038/srep42633.
Pimviriyakul P, Wongnate T, Tinikul R, Chaiyen P. 2019. Microbial degradation of halogenated aromatics: molecular mechanisms and enzymatic reactions. Microbial Biotechnology.1751-7915.13488. doi:10.1111/1751-7915.13488.
Ramya S L, Venkatesan T, Murthy K S, Jalali S K, and Varghese A. 2016a. Degradation of acephate by Enterobacter asburiae, Bacillus cereus and Pantoea agglomerans isolated from diamond back moth Plutella xylostella (L), a pest of cruciferous crops. J. Environ. Biol. 37:61.
Retnowati D, Solihin DD, Ghulamahdi M and Lestari Y. 2021. Next-generation sequencing based actinobacteria community associated with callyspongia sp. From kepulaan seribu marine national park, Jakarta Indonesia. Biodiversitas, 22(9) 3702-3708.org/10.13057/biodiv/d220913.
Rix RR. Ayyanath MM, Christopher CG. 2016. Sublethal concentrations of imidacloprid increase reprod,uction, alter expression of detoxification genes, and primeMyzus persicaefor subsequent stress. Journal of Pest Science, 89(2), 581–589. doi:10.1007/s10340-015-0716-5.
Russell RJ, Scott C, Jackson C J, Pandey R, Pandey G, Taylor M C, Coppin CW, Liu JW, John G, Oakeshott G. 2011. The evolution of new enzyme function lessons from xenobiotic metabolizing bacteria versus insecticide resistant insects. Evol. Appl. 4, 225–248. doi: 10.1111/j.1752-4571.2010.00175.x.
Sampson T R and Mazmanian S K. 2015. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 17, 565–576. doi: 10.1016/j.chom.2015.04.011
Schloss PD, McBain AJ. 2019. Reintroducing mothur 10 years later. Applied and Environmental. Microbiology, 86(2). doi:10.1128/AEM.02343-19.
Siddiqui AJ, Khan MM, Bamisile SB, Hafeez M, Qasim M, Rasheed TM, Rashed AM, Ahmad S, Shahid IM, Xu Y. 2022. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Microbiol Sec. 13 – 2022. doi.org/10.3389/fmicb.2022.870462.
Stosiek N, Talma M, Klimek O, Magdalena. 2019. Carbon-Phosphorus Lyase—the State of the Art. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-019-03161-4.
Tang M, Lv L, Jing S, Zhu L, He G. 2010. Bacterial symbionts of the brown planthopper Nilaparvata lugens Stal (Homoptera?: Delphacidae) 76(6): 1740–1745. doi: 10.1128/AEM.02240-09.
Tang Q, Ma K, Chi H, Hou Y, Gao X, Desneux N. 2019. Transgenerational hormetic effects of sublethal dose of flupyradifurone on the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). PLOS ONE, 14(1), e0208058. doi:10.1371/journal.pone.0208058.
Trisyono YA, Aryuwandari VEF, Rahayu T, Martono E. 2017. Effects of etofenprox applied at the sublethal concentration on the fecundity of rice brown planthopper, Nilaparvata lugens. Journal of Asia-Pacific Entomology, 20(2), 547–551. doi:10.1016/j.aspen.2017.03.013.
Vontas JG, Small GJ, Nikou DC. 2002. Purifcation, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem J 362:329–337. doi. org/10.1042/0264-6021:3620329.
Wang L, Zhang Y, Xie W, Wu Q, Wang S. 2016. Sublethal effects of spinetoram on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology. S0048357516300104. doi:10.1016/j.pestbp.2016.02.002.
Yucong Z, Dongxian Z, Zhuanzhuan S, Qian YY, Ting C, Rong C, Mawuli D, Xiaochan CW. 2022. Stereoselective degradation pathway of amide chiral herbicides and its impacts on plant and bacterial communities in integrated vertical flow constructed wetlands. Bioresource Technology. 351-5- 2022, 126997. doi.org/10.1016/j.biortech.2022.126997
Zhang J, Ai Z, Liu H, Tang D W S, Yang X, Wang G. 2022a. Short-term N addition in a Pinus tabuliformis plantation: Microbial community composition and interactions show different linkages with ecological stoichiometry. Appl. Soil Ecol. 174, 104422. doi:10.1016/j.apsoil.2022.104422
Zhang S, Shu J, Xue H. Zhang W, Zhang Y, Liu Y. 2020b. The gut microbiota in Camellia Weevils are influenced by plant secondary metabolites and contribute to saponin degradation. Msystems 5, e692–e619. doi: 10.1128/ mSystems.00692-19.

Most read articles by the same author(s)

1 2 > >>