Amylase enzyme production with variation of carbon sources and molecular identification of thermophilic fungus Aspergillus sp. LBKURCC304 from Bukik Gadang, West Sumatra, Indonesia

##plugins.themes.bootstrap3.article.main##

SARYONO
SILVERA DEVI
TITANIA T. NUGROHO
WIDYLIA FITRI FADHILA
LORENA LORENITA
FIDA SELFIANA NASUTION
NABELLA SURAYA

Abstract


Abstract. Saryono, Devi S, Nugroho TT, Fadhila WF, Lorenita L, Nasution FS, Suraya N2023Amylase enzyme production with variation of carbon sources and molecular identification of thermophilic fungus Aspergillus sp. LBKURCC304 from Bukik Gadang, West Sumatra, IndonesiaBiodiversitas 24: 1200-1205Amylase is an enzyme used to hydrolyze starch into smaller molecules. Starch degradation is very difficult because of the presence of 1-4 glucoside bonds from complex polysaccharides and the presence of enzyme accommodation centers, so the production of amylase is in great demand by industry. The production of amylase is strongly influenced by carbohydrates which act as inducers to stimulate the production of enzymes. This research was conducted to determine the effect of different carbohydrate sources on the production of amylase enzyme from thermophilic fungus Aspergillussp. LBKURCC304. Different carbon sources used werecassava, corn, taro, purple sweet potato, potato, breadfruit, canna, gembili, gadung, and sago. The effect of different carbohydrate sources on enzyme production was statistically tested using Duncan's Multiple Range Test (DMNRT) at a significant level of 5% and Principal Component Analysis (PCA). The results of molecular identification showed that carbohydrates from sago were a relatively better carbon source than other carbon sources, with an activity of 0.0391±0.0017 U/mL, anda specific activity of 0.0874±0.0049 U/mg. The highest (0.7651±0.0096 mg/mL) protein content wasrecorded from canna. Molecular identification showed that LBKURCC304 isolate was Aspergillus fumigatus.


##plugins.themes.bootstrap3.article.details##

References
Abd-elhalem BT, Gamal RF, Abou-taleb KA. 2015. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Annals of Agricultural Science 60 (2): 193–202. https://doi.org/10.1016/j.aoas.2015.06.001
Ahmad FB, Williams PA, Doublier JL, Durand S, Buleon A. 1999. Physicochemical characterisation of sago starch. Carbo Polym 38(4): 361-370. https://doi.org/10.1016/S0144-8617(98)00123-4
Aina AJ, Falade KO, Akingbala JO, Titus P. 2012. Physicochemical properties of caribbean sweet potato (Ipomoea batatas (L) Lam) starches. Food and Bioprocess Technology 5(2): 576-583. DOI:10.1007/s11947-009-0316-6
Ardhi A, Sidauruk AN, Suraya N, Pratiwi NW, Pato U, Saryono. 2020. Molecular identification of amylase-producing thermophilic bacteria isolated from Bukit Gadang Hot Spring, West Sumatra, Indonesia. Biodiversitas 21 (3) : 994 – 1000. https://doi.org/10.13057/biodiv/d210319
Chen K, Huang D, Liu C. 2001. The mycoflora of hot spring soil in Northern Taiwan. Taiwania 48(3): 203–211. DOI:10.6165/tai.2003.48(3).203
Dojnov B, Gruji? M, Per?evi? B, Vuj?i? Z. 2015. Enhancement of amylase production by Aspergillus sp. using carbohydrates mixtures from triticale. Journal of the Serbian Chemical Society 80 (10), 1279–1288. DOI:10.2298/JSC150317043D
Fauziah, Mas S, Hendrian. 2016. Study on starch granules of local varieties of Dioscorea hispida and Dioscorea alata. Journal of Tropical Life Science 6(1): 47–52. DOI: 10.11594/jtls.06.01.09
Karmakar R, Ban DK, Ghosh U. 2014. Comparative study of native and modified starches isolated from conventional and nonconventional sources. International Food Research Journal 21(2): 597–602.
Khatijah I, Patimah H. 1995. Physico-chemical properties of sago starch in Malaysia. MARDI Research Journal 23(1): 93-97.
Lowry OH, Rousenbough HI, Fair AL, Randall RI. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275
Liu X, Kokare C. 2017. Microbial enzymes of use in industry. Biotechnology of microbial enzymes: production, biocatalysis and industrial applications, pp.267-298. DOI:10.1016/B978-0-12-803725-6.00011-X
Benassi VM, de Lucas RC, Michelin M, Jorge JA, Terenzi HF, Polizeli MLTM. 2012. Production and action of an Aspergillus phoenicis enzymatic pool using different carbon sources. Brasilian Journal of Food Technology 15(3): 253–260. https://doi.org/10.1590/S1981-67232012005000019
Mahmood S, Shahid MG, Nadeem M, Irfan M, Syed Q. 2016. Production and optimization of a-amylase from Aspergillus niger using potato peel as substrate. Pak. J. Biotechnol 13(2): 101-109.
Nuwamanya E, Baguma Y, Wembabazi E, Rubaihayo P. 2011. Comparative study of the physicochemical properties of starches from root, tuber and cereal crops. African Journal of Biotechnology 10(56): 12018–12030. DOI:10.5897/AJB10.2310
Odilia AS, Makonde HM, Kasili RW, Boga, H.I. 2018. Isolation and characterization of fungi from a hot-spring on the shores of Lake Bogoria, Kenya. J Yeast Fungal Res 9 (1): 1-13. DOI:10.5897/JYFR2018.0182
Otegbayo B, Oguniyan D, Akinwumi O. 2013. Physicochemical and functional characterization of yam starch for potential industrial applications. Starch/Staerke 66(3–4): 235–250. https://doi.org/10.1002/star.201300056
Ovando-Chacon SL, Tacias-Pascacio VG, Ovando-Chacon GE, Rosales-Quintero A, Rodriguez-Leon A, Ruiz-Valdiviezo VM, Servin-Martinez A. 2020. Characterization of Thermophilic Microorganisms in the Geothermal Water Flow of El Chichón Volcano Crater Lake. Water 12 (2172): 1-16. https://doi.org/10.3390/w12082172
Page D. S. 1989. Principles of biological chemistry. Second Edition. Jakarta: Erlangga.
Pandey A, Nigam P., Soccol C, Thomaz-Soccol V, Singh D, Mohan R. 2020. REVIEW Advances in microbial amylases. Biotechnol. Appl. Biochem 31 (2000): 135-152. DOI:10.1042/BA19990073
Poli A, Esposito E, Lama L, Orlando P, Nicolaus G, de Appolonia F, Gambacorta A, Nicolaus B. 2006. Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Systematic and Applied Microbiology 29(4): 300–307. DOI:10.1016/j.syapm.2005.10.003
Piyachomkwan K, Chotineeranat S, Kijkhunasatian C, Tonwitowat R, Prammanee S, Oates CG, Sriroth K. 2002. Edible canna (Canna edulis) as a complementary starch source to cassava for the starch industry. Industrial Crops and Products 16 (1): 11–21. https://doi.org/10.1016/S0926-6690(02)00003-1
Rincon AM, Padilla, FC. 2004. Physichochemical properties of breadfruit (Artocarpus Altilis) starch from Margarita Island, venezuela. Arch Latinoam 54(4): 449-456.
Saryono, Novianty R, Suraya N, Piska F, Devi S, Pratiwi NW, Ardhi A.2022. Molecular identification of cellulase-producing thermophilic fungi isolated from Sungai Pinang hot spring, Riau Province, Indonesia. Biodiversitas 23 (3): 1457-1465. https://doi.org/10.13057/biodiv/d230333
Simair AA, Qureshi AS, Khushk I, Ali CH, Lashari S, Bhutto MA, Mangrio GS, Lu C. 2017. Production and partial characterization of ?-amylase enzyme from Bacillus sp. BCC 01-50 and potential applications. Biomed. Res. Int 1–9. DOI:10.1155/2017/9173040
Swinkles JJM. 1985. Source of starch, its chemistry and physic. In Van Beynum, G. M. A. and J. A. Roels. Starch Conversion Technology. New York: Marcel Dekker Inc.
Thitipraphunkul K, Uttapap D, Piyachomkwan K, Takeda Y. 2003. A comparative study of edible canna (Canna edulis) starch from different cultivars. Part I: Chemical composition and physicochemical properties. Carbohydrate Polymers 53(3): 317–324. https://doi.org/10.1016/S0144-8617(03)00081-X
Unal A. 2015. Production of ?-amylase from some thermophilic Aspergillus species and optimization of its culture medium and enzyme activity. African Journal of Biotechnology 14(47): 3179-3183. DOI:10.5897/AJB2015.14924
Uthumporn U, Wahidah N, Karim AA. 2014. Physicochemical Properties Of Starch From Sago (Metroxylon Sagu) Palm Grown In Mineral Soil At Different Growth Stages. IOP Conference Series: Materials Science and Engineering 62(1): 012026. DOI:10.1088/1757-899X/62/1/012026

Most read articles by the same author(s)

1 2 > >>