Molecular identification of cellulase-producing thermophilic fungi isolated from Sungai Pinang hot spring, Riau Province, Indonesia

##plugins.themes.bootstrap3.article.main##

SARYONO
RIRYN NOVIANTY
NABELLA SURAYA
FINNA PISKA
SILVERA DEVI
NOVA WAHYU PRATIWI
AULIA ARDHI

Abstract

Abstract. Saryono, Novianty R, Suraya N, Piska F, Devi S, Pratiwi NW, Ardhi A. 2022. Molecular identification of cellulase-producing thermophilic fungi isolated from Sungai Pinang hot spring, Riau Province, Indonesia. Biodiversitas 23: 1457-1465. Thermostable cellulolytic enzymes have become a subject of interest in industrial processes due to their ability to degrade cellulosic polysaccharides at elevated temperatures produced by microorganisms such as fungi and bacteria. In the present study, cellulase-producing thermophilic fungi were isolated and identified from Sungai Pinang hot spring, Riau Province, Indonesia. Morphological identification was carried out by macroscopic and microscopic observations. The ability of the thermophilic fungi to produce cellulase was determined using the clear zone test on carboxymethyl cellulose medium with a congo red staining. Isolate with the highest activity was identified molecularly using universal primers ITS1F and ITS4R. The results showed 19 isolates were morphologically identified as Aspergillus sp. and Penicillium sp. Based on qualitative testing, 3 of the19 isolates showed cellulase activity. The isolate performing the most considerable cellulase was LBKURCC293, which was identified as Aspergillus fumigatus with a cellulase activity of 2.6 x 10-2 IU/mL and a specific cellulase activity 8.0 x 10-3 IU/mg protein after 96 days of incubation.

##plugins.themes.bootstrap3.article.details##

References
Alrumman S, Mostafa YSM, Al-Qahtani S, Taha THT. 2018. Hydrolytic enzyme production by thermophilic bacteria isolated from Saudi hot springs. Open Life Sci 13: 470-480. doi: 10.1515/biol-2018-0056.
Anwar W, Subhani MN, Haider MS, Shahid AA, Mushtaq H, Rehman MZU, Hameed U, Javed S. 2016. First record of Trichoderma longibrachiatum as entomopathogenic fungi against Bemisia tabaci in Pakistan. Pak J Phytopathol 28(02): 287-294.
Ardhi A, Sidauruk AN, Suraya N, Pratiwi NW, Pato U, Saryono. 2020. Molecular identification of amylase-producing thermophilic bacteria isolated from Bukit Gadang Hot Spring, West Sumatra, Indonesia. Biodiversitas 21(3): 994-1000. https://doi.org/10.13057/biodiv/d210319.
Arora R, Behera S, Sharma NK, Singh R, Yadav YK, Kumar S. 2014. Biochemical conversion of rice straw (Oryza sativa L.) to bioethanol using thermotolerant isolate K. marxianus NIRE-K3. In: Sharma NR, Thakur RC, Sharma M, Parihar L, Kumar G (eds) Proceedings of exploring and basic sciences for Next Generation Frontiers. Elsevier, New Delhi, pp. 143–146.
Brasileiro BTRV, Coimbra MRM, De Morais MA, De Oliveira N T. 2004. Genetic variability within Fusarium solani specie as revealed by PCR-fingerprinting based on PCR markers. Braz J Microbiol 35: 205–210. doi: 10.1590/S1517-83822004000200006.
El-Hadi AA, El-Nour SA, Hammad A, Kamel Z, Anwar M. 2014. Optimization of cultural and nutritional conditions for carboxymethylcellulase production by Aspergillus hortai. J Radiat Res Appl Sci 7(1): 23-28. doi: 10.1016/j.jrras.2013.11.003. https://doi.org/10.1016/j.jrras.2013.11.003.
Fachrial E, Anggraini S, Harmileni, Nugroho TT, Saryono. 2019. Isolation and molecular identification of carbohydrase and protease producing Bacillus subtilis JCM 1465 isolated from Penen Hot Springs in North Sumatra, Indonesia. Biodiversitas 20(12): 3493-3498. https://doi.org/10.13057/biodiv/d201205.
Gautam SP, Bundela PS, Pandey AK, Khan J, Awasthi MK, Sarsaiya S. 2011. Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Intl 810425: 1-8. https://doi.org/10.4061/2011/810425.
Gautam AK, Bhadauria R. 2012. Characterization of Aspergillus species associated with commercially stored Triphala powder. Afr J Biotechnol 11(104): 16814-16823.
Gordillo-Fuenzalida F, Echeverria-Vega A, Cuadros-Orellana S, Faundez C, Kähne T, Morales-Vera R. 2019. Cellulases production by a Trichoderma sp. using food manufacturing wastes. Appl Sci 9: 4419. doi: 10.3390/app9204419.
Ikram-ul-Haq, Javed M, Khan TS, Siddiq Z. 2005. Cotton saccharifying activity of cellulases produced by co-culture of Aspergillus niger and Trichoderma viride. Res J Agr Biol Sci 1(3): 241-245.
Immanuel G, Bhagavath C, Raj PI, Esakkiraj P, Palavesam A. 2006. Production and partial purification of cellulase by Aspergillus niger and A. fumigatus fermented in coir waste and sawdust. Internet J Microbiol 3(1): 1-11. doi:10.5580/49.
Islam F, Roy N. 2018. Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res Notes 11(445): 1-6. https://doi.org/10.1186/s13104-018-3558-4.
Krimitzas A, Pyrri A, Kouvelis VN, Kapsanaki-Gotsi E, Typas MA. 2013. A phylogenetic analysis of greek isolates of Aspergillus species based on morphology and nuclear and mitochondrial gene sequences. BioMed Res Intl 260395: 1-18. https://doi.org/10.1155/2013/260395.
Larena I, Salazar O, Gonzalez V, Julian MC, Rubio V. 1999. Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. J Biotechnol 75: 187–194. doi: 10.1016/s0168-1656(99)00154-6.
Lowry OH, Rousenbough HI, Fair AL, Randall RI. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
Mallerman J, Papinutti L, Levin L. 2015. Characterization of ?-glucosidase produced by the white rot fungus Flammulina velutipes. J Microbiol Biotechnol 25:57–65. doi: 10.4014/jmb.1401.01045.
Mandels M, Andreotti RE, Roche C. 1976. Measurement of saccharifying cellulase. Biotechnol Bioeng Symp 6: 21-33.
Mkumbe BS, Sajidan, Pangastuti A, Susilowati A. 2018. Phylogenetic analysis based on internal transcribed spacer region (ITS1-5.8S-ITS2) of Aspergillus niger producing phytase from Indonesia. Intl Conf Sci Appl Sci 020015-1-9. doi: 10.1063/1.5054419.
Mohammad BT, Al Daghistani HI, Jaouani A, Abdel-Latif S, Kennes C. 2017. Isolation and characterization of thermophilic bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis isolate as potential producers of thermostable enzymes. Intl J Microbiol 2017: 1-12. https://doi.org/10.1155/2017/6943952.
Moretti MMS, Bocchini-Martins DA, Silva RD, Rodrigues A, Sette LD, Gomes E. 2012. Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Braz J Microbiol 43(3): 1062-1071. doi: 10.1590/S1517-838220120003000032.
Nema N, Alamir L, Mohammad M. 2016. Partial purification and molecular weight determination of cellulase from Bacillus cereus. Intl Food Res J 23 (2): 894-898.
Novianty R, Saryono, Awaluddin A, Pratiwi NW, Hidayah A, Juliantari E. 2021. The diversity of fungi consortium isolated from polluted soil for degrading petroleum hydrocarbon. Biodiversitas 22: 5077-5084.
Raja HA, Miller AN, Pearce CJ, Oberlies NH. 2017. Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 80: 756?770. doi: 10.1021/acs.jnatprod.6b01085.
Rezaei F, Richard TL, Logan BE. 2008. Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnol Bioeng 101(6): 1163-1169. doi: 10.1002/bit.22015.
Samson RA, Houbraken J, ThraneU, Frisvad J. 2010. Food and indoor fungi. CBS KNAW Biodiversity Center, Utrecht.
Sarkar N, Aikat K. 2013. Aspergillus fumigatus NITDGPKA3 provides for increased cellulase production. Intl J Chem Eng 2014: 959845. https://doi.org/10.1155/2014/959845.
Saroj P, Manasa P, Narasimhulu K. 2018. Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Bioresour Bioprocess 5(31): 1-14. https://doi.org/10.1186/s40643-018-0216-6.
Saroj P, Manasa P, Narasimhulu K. 2021. Assessment and evaluation of cellulase production using ragi (Eleusine coracana) husk as a substrate from thermo acidophilic Aspergillus fumigatus JCM 10253. Bioprocess Biosyst Eng 44: 113–126. https://doi.org/10.1007/s00449-020-02428-z.
Soares I, Ta?vora Z, Barcelos RP, Baroni S. 2012. Microorganism-produced enzymes in the food industry, in: Valdez B. (eds.) Scientific, health and social aspects of the food industry. IntechOpen. doi: 10.5772/31256.
Suraya N, Nugroho TT, Pratiwi NW, Ardhi A, Saryono. 2017. Molecular identification of endophytic fungus LBKURCC40 isolated from dahlia tubers using its rDNA sequence. Intl J Sci Appl Tech 2(2): 10-18.
Vázquez-Montoya EL, Castro-Ochoa LD, Maldonado-Mendoza IE, Luna-Suárez S, Castro-Martínez C. 2019. Moringa straw as cellulase production inducer and cellulolytic fungi source. Rev Argent Microbiol 52(1): 4-12. https://doi.org/10.1016/j.ram.2019.02.005.
Yamada R, Hasunuma T, Kondo A. 2013. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol Adv 31: 754–763. doi: 10.1016/j.biotechadv.2013.02.007.

Most read articles by the same author(s)

1 2 > >>