Short Communication: The effects of SO2 and NO2 fumigation on the chlorophyll of Parmotrema perlatum from Mt. Lawu, Cemoro Sewu, Indonesia

##plugins.themes.bootstrap3.article.main##

EFRI ROZIATY
SUTARNO
SUNTORO
SUGIYARTO

Abstract

Abstract. Roziaty E, Sutarno, Suntoro, Sugiyarto. 2023. Short Communication: The effects of SO2 and NO2 fumigation on the chlorophyll of Parmotrema perlatum from Mt. Lawu, Cemoro Sewu, Indonesia. Biodiversitas 24: 2630-2637. Lichens are symbiotic organisms composed of algae and fungi. Lichens have long been recognized as bioindicators of environmental health. One of the lichen parts that will be affected by pollution is chlorophyll. The lichen thallus was fumigated with the gases from motor vehicle emissions. The lichens under study were Parmotrema perlatum (Huds.) M. Choisy, found in Cemoro Sewu Forest, Magetan, East Java. The categorization of vehicle emission exposure levels includes Level 0 (no fumigation, control group), Level 1 (1.5 hours), Level 2 (3 hours), Level 3 (4.5 hours), Level 4 (6 hours), Level 5 (7.5 hours) and Level 6 (9 hours). The fumigated thallus had already been examined with spectrophotometry. Sulfuric dioxide (SO2) was measured at 324 nm and 328 nm, whereas nitrogen dioxide and chlorophyll were measured at 645 nm and 663 nm. Each test was replicated three times (R1, R2, and R3). Level 6 had the highest NO2 and SO2 content. The highest NO2 content on thallus lichens was 4.00 at Level 6, while the lowest was 2.14 at Level 0 (Control). The highest SO2 content was 1.856 at Level 6, whereas the lowest was 0.231 at Level 0 (Control). The highest chlorophyll content of Parmotrema was found at Level 0, while the lowest was identified at Level 6 (0.245 µg ml-1). The highest content of chlorophyll b was 0.659 (Level 4), while the lowest was Level 6 (0.413 µg ml-1). The thallus Parmotrema responded positively to NO2 and SO2 exposure. Correlation tests between the four components, specifically fumigation, NO2, SO2, and chlorophyll, show a positive correlation between pollutants and chlorophyll.

##plugins.themes.bootstrap3.article.details##

References
Abas, A. (2021). A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges. Ecological Indicators, 121, 107197. https://doi.org/10.1016/j.ecolind.2020.107197
Augusto, S., Pereira, M. J., Soares, A., & Branquinho, C. (2007). The contribution of environmental biomonitoring with lichens to assess human exposure to dioxins. International Journal of Hygiene and Environmental Health, 210(3–4), 433–438. https://doi.org/10.1016/j.ijheh.2007.01.017
Caesar, J., Tamm, A., Ruckteschler, N., Leifke, A. L., & Weber, B. (2018). Revisiting chlorophyll extraction methods in biological soil crusts – methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods. Biogeosciences, 15, 1415–1424. https://www.biogeosciences.net/15/1415/2018/
Calvel, S., & Liberatore, S. (2004). Applicability of in situ or transplanted lichens for assessment of atmospheric pollution in Patagonia, Argentina. Journal of Atmospheric Chemistry, 49(1), 199–210. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed6&NEWS=N&AN=2005125594
Cecconi, E., Fortuna, L., Pellegrini, E., Bertuzzi, S., Lorenzini, G., Nali, C., & Tretiach, M. (2019). Beyond ozone-tolerance: Effects of ozone fumigation on trace element and PAH enriched thalli of the lichen biomonitor Pseudevernia furfuracea. Atmospheric Environment, 210(March), 132–142. https://doi.org/10.1016/j.atmosenv.2019.03.026
Gries, C., Jose Sanz, M., & Nash, T. homas H. (1995). The effect of SO2 fumigation on CO2 gas exchange, chlorophyll fluorescence and chlorophyll degradation in different lichen species from western North America. Cryptogamic Botany, January, 239–246.
Grube, M., & Muggia, L. (2010). Lichen Symbioses. 295–299.
Häffner, E., Lomský, B., Hynek, V., Hällgren, J. E., Bati?, F., & Pfanz, H. (2001). Air pollution and lichen physiology. Physiological responses of different lichens in a transplant experiment following an SO2-gradient. Water, Air, and Soil Pollution, 131(1–4), 185–201. https://doi.org/10.1023/A:1011907530430
Hardini, Y. (2010). Keanekaragaman Lichen di Denpasar Sebagai Bioindikator Pencemaran Udara. September.
Hart, R., Webb, P. G., Biggs, R. H., & Portier, K. M. (1988). The use of lichen fumigation studies to evaluate the effects of new emission sources on class i areas. Journal of the Air Pollution Control Association, 38(2), 144–147. https://doi.org/10.1080/08940630.1988.10466361
Hawksworth, D. L., & Rose, F. (1970). Qualitative scale for estimating sulphur dioxide air pollution in England and wales using epiphytic lichens. Nature, 227(5254), 145–148. https://doi.org/10.1038/227145a0
Hawksworth, David L. (2004). Rediscovery of the original material of Osbeck’s Lichen chinensis and the re-instatement of the name Parmotrema perlatum (Parmeliaceae). Herzogia, 17, 33–44. http://www.blam-hp.eu/herzogia17/04 - Hawksworth.pdf
Hayward, B. W., & Hayward, G. C. (1980). Lichens of the eastern Bay of Islands , northern New Zealand. Tane, February, 115–126.
Herk, C. M. (1999). Mapping of Ammonia Pollution with Epiphytic Lichens in the Netherlands. The Lichenologist, 31(01), 9. https://doi.org/10.1017/s0024282999000055
Holopainen, T., & Lampi, K. (1985). Characteristic ultrastructural symptoms caused in lichens by experimental exposure to nitrogen compounds and fluorides Author ( s ): TOINI HOLOPAINEN and L . KÄRENLAMPI Source?: Annales Botanici Fennici , 1985 , Vol . 22 , No . 4 ( 1985 ), pp . 333-342 Pu. Ann, 22(4), 333–342.
Jayalal, R. G. U., Ileperuma, O. A., Wolseley, P., Wijesundara, D. S. A., & Karunaratne, V. (2017). Correlation of atmospheric purity index to the diversity of lichens in the Horton Plains National Park, Sri Lanka. Ceylon Journal of Science, 46(2), 13. https://doi.org/10.4038/cjs.v46i2.7426
Jensen, M. (2002). Measurement of Chlorophyll Fluorescence in Lichens. Protocols in Lichenology, 49(0), 135–151. https://doi.org/10.1007/978-3-642-56359-1_9
Jovan, S. (2008). Lichen Bioindication of Biodiversity , Air Quality , and Climate?: Baseline Results From Monitoring in Washington , Oregon , and California (Issue March).
Keith J. Pucket, E. Nieboer, WP. Flora, D. R. (1973). Pucket1973-SO2.pdf. New Phytologist, 72(1), 141–154. https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1973.tb02019.x
Kinalio?lu, K. (2005). Lichens of Giresun district Giresun province, Turkey. Turkish Journal of Botany, 29(6), 417–423.
Kuldeep, S., & Prodyut, B. (2015). Lichen as a Bio-Indicator Tool for Assessment of Climate and Air Pollution Vulnerability?: Review. International Research Journal of Enviriment Sciences, 4(12), 107–117.
Lackovi?ová, A., Guttová, A., Ba?kor, M., Pišút, P., & Pišút, I. (2013). Response of Evernia prunastri to urban environmental conditions in Central Europe after the decrease of air pollution. Lichenologist, 45(1), 89–100. https://doi.org/10.1017/S002428291200062X
Loppi, S., Frati, L., Paoli, L., Bigagli, V., Rossetti, C., Bruscoli, C., & Corsini, A. (2004). Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy). Science of the Total Environment, 326(1–3), 113–122. https://doi.org/10.1016/j.scitotenv.2003.12.003
Loppi, Stefano, & Corsini, A. (2003). Diversity of epiphytic lichens and metal contents of Parmelia caperata thalli as monitors of air pollution in the town of Pistoia (C Italy). Environmental Monitoring and Assessment, 86(3), 289–301. https://doi.org/10.1023/A:1024017118462
Meusel, H., Tamm, A., Kuhn, U., Wu, D., Lena Leifke, A., Fiedler, S., Ruckteschler, N., Yordanova, P., Lang-Yona, N., Pöhlker, M., Lelieveld, J., Hoffmann, T., Pöschl, U., Su, H., Weber, B., & Cheng, Y. (2017). Emission of nitrous acid from soil and biological soil crusts represents an important source of HONO in the remote atmosphere in Cyprus. Atmospheric Chemistry and Physics, 18(2), 1–20. https://doi.org/10.5194/acp-18-799-2018
Muggia, L., & Grube, M. (2018). Fungal diversity in lichens: From extremotolerance to interactions with algae. Life, 8(2), 1–14. https://doi.org/10.3390/life8020015
Nash, T. H., & Gries, C. (1991). Lichens as Indicators of Air Pollution. Handbook of Environmental Chemistry, 4(January), 1–29. https://doi.org/10.1007/978-3-540-47343-5-1
Parizadeh, H., & Garampalli, R. H. (2017). Physiological and chemical analysis for identification of some lichen extracts. Journal of Pharmacognosy and Phytochemistry, 6(5), 2611–2621.
Pfeifhofer, H. W., & Kranner, I. (2002). Protocols in Lichenology. Protocols in Lichenology, January. https://doi.org/10.1007/978-3-642-56359-1
Piccotto, M., Bidussi, M., & Tretiach, M. (2011). Effects of the urban environmental conditions on the chlorophyll a fluorescence emission in transplants of three ecologically distinct lichens. Environmental and Experimental Botany, 73(1), 102–107. https://doi.org/10.1016/j.envexpbot.2010.09.010
Porra, R. J., Thomson, W. A., & Kriedemann, P. . (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 957, 384–394.
Riddell, J., Padgett, P. E., & Nash, T. H. (2012). Physiological responses of lichens to factorial fumigations with nitric acid and ozone. Environmental Pollution, 170, 202–210. https://doi.org/10.1016/j.envpol.2012.06.014
Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research, 89(1), 27–41. https://doi.org/10.1007/s11120-006-9065-9
Root, H. T., Jovan, S., Fenn, M., Amacher, M., Hall, J., & Shaw, J. D. (2021). Lichen bioindicators of nitrogen and sulfur deposition in dry forests of Utah and New Mexico, USA. Ecological Indicators, 127, 107727. https://doi.org/10.1016/j.ecolind.2021.107727
Rowan, K. S. (1989). Photosynthetic Pigments of Algae. Cambridge University Press. https://doi.org/10.2216/i0031-8884-30-2-235.1
Roziaty, E., Sutarno, Suntoro, S., & Sugiyarto. (2020). Ecological indices on Lichen biodiversity in three main different areas ( the cities , countrysides and the forests ) of Jogjakarta and Surakarta , Central Java , Indonesia. EurAsian Journal of BioSciences, 14(2), 4543–4550.
Schulze. (1989). Air pollution and forest decline in a spruce (Picea abies) forest. Science, 244(7), 776–783.
Sett, R., & Kundu, M. (2016). Epiphytic Lichens?: Their Usefulness as Bio-indicators of Air Pollution. 3(3), 17–24.
Shukla, V., & Upreti, D. K. (2011). Changing lichen diversity in and around urban settlements of Garhwal Himalayas due to increasing anthropogenic activities. Environmental Monitoring and Assessment, 174(1–4), 439–444. https://doi.org/10.1007/s10661-010-1468-6
Shukla, V., Upreti, D. K., & Bajpai, R. (2014). Lichens to biomonitor the environment. In Lichens to Biomonitor the Environment. https://doi.org/10.1007/978-81-322-1503-5
Skye, E. (1968). Lichens and Air Pollution. A Study of Cryptogamic Epiphytes and Environment in the Stockholm Region. In The Bryologist (1st ed.). Almqvist & Wiksells Boktryckeri AB. https://doi.org/10.2307/3241131
Stapper, N. J., & John, V. (2015). Monitoring climate change with lichens as bioindicators Suivi du changement climatique à l ’ aide des lichens comme bioindicateurs. 1, 1–12.
Sudirman, R., Idwan, L., & Koesmaryono, Y. (2015). Air Quality Bioindicator Using the Population of Epiphytic Macrolichens in Bogor City, West Java. HAYATI Journal of Biosciences, 22(2), 53–59. https://doi.org/10.4308/hjb.22.2.53
Sujetovien?, G. (2010). Road traffic pollution effects on epiphytic lichensTransporto sukeliamos oro taršos poveikis epifitin?ms kerp?ms. Ekologija, 56(1), 64–71. https://doi.org/10.2478/v10055-010-0009-5
Theakston, F. (2006). Air Quality Guidelines. Air Quality Guidelines, 91.
Thorne, S. W., Newcomb, E. H., & Osmond, C. B. (1977). Identification of chlorophyll b in extracts of prokaryotic algae by fluorescence spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 74(2), 575–578. https://doi.org/10.1073/pnas.74.2.575
Van der Wat, L., & Forbes, P. B. C. (2015). Lichens as biomonitors for organic air pollutants. TrAC - Trends in Analytical Chemistry, 64, 165–172. https://doi.org/10.1016/j.trac.2014.09.006
Von Arb, C. hristoph, Mueller, C., Ammann, K., & Brunold, C. (1990). Lichen physiology and air pollution. New Phytol., 115, 431–437.
Wakefield, J. M., & Bhattacharjee, J. (2012). Effect of air Pollution on Chlorophyll Content and Lichen Morphology in Northeastern Louisiana. Evansia, 29(4), 104–114. https://doi.org/10.1639/079.029.0404
Will-wolf, S., Hawksworth, D. L., Mccune, B., Rosentreter, R., & Sipman, H. J. M. (1995). Lichenized Fungi (Vol. 173).

Most read articles by the same author(s)

1 2 3 4 5 6 > >>