Genetic diversity analysis of Puan Kalianda kopyor coconuts (Cocos nucifera) from South Lampung, Indonesia based on SSR markers

##plugins.themes.bootstrap3.article.main##

MEGAYANI SRI RAHAYU
ASEP SETIAWAN
ISMAIL MASKROMO
AGUS PURWITO
SUDARSONO

Abstract

Abstract. Rahayu MS, Setiawan A, Maskromo I, Purwito A, Sudarsono. 2021. Genetic diversity analysis of Puan Kalianda kopyor coconuts (Cocos nucifera) from South Lampung, Indonesia based on SSR markers. Biodiversitas 23: 205-211. Puan Kalianda kopyor coconut (Cocos nucifera L.) is a newly released tall kopyor coconut from Kalianda, South Lampung, Indonesia. The kopyor coconut is an exotic, highly economic value coconut mutant with an abnormal endosperm. This study aimed to analyze the genetic diversity of Puan Kalianda kopyor coconut from South Lampung, Indonesia using SSR markers. As many as 91 Puan Kalianda kopyor coconut accessions were genotyped using 10 SSR marker loci, and the generated data were used to evaluate their genetic diversity and population structure. The results showed a high degree of SSR marker polymorphism (PIC value = 67%), indicating the SSR marker loci are informative for revealing the genetic diversity within the evaluated Puan Kalianda kopyor coconut population. The Puan Kalianda coconut population showed a 70% expected heterozygosity (He) and 60% observed heterozygosity. The phylogenetic analysis formed two main clusters, and each cluster consisted of three sub-clusters. The Genetic structure analysis showed that the population most probably derived from two ancestral origins (K = 2) and can further be clustered into six sub-clusters (K = 6). Therefore, since genetic diversity within the population is relatively high, the Puan Kalianda tall kopyor coconut population can be considered an essential genetic resource for future kopyor coconut development.

##plugins.themes.bootstrap3.article.details##

References
Creste S, Tulmann NA, Figueira A. 2001. Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Molecular Biology Reporter. 19:299-306. http://doi.org/10.1007/BF02772828
Dirjen Pengembangan Ekspor Nasional. 2017. Optimalisasi Bahan Baku Kelapa. Warta Ekspor Edisi September 2017. 19p. Dirjen Pengembangan Ekspor Nasional Kementerian Perdagangan Republik Indonesia. http://djpen.kemendag.go.id/app_frontend/admin/docs /publication/8121519022680.pdf; Accessed 23 Nov 2019.
Earl D A and BM vonHold. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method Conservation Genet Res (2012) 4:359–361. http:/doi.org/10.1007/s12686-011-9548-7
Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 14(8):2611-2620. http://doi.org/10.1111/j.1365-294X.2005.02553.x
Govindaraj M, Vetriventhan, M, Srinivasan, M. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International 2015:431487. https://doi.org/10.1155/2015/431487
Gunn BF, Baudouin L, Olsen KM. 2011. Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics. Plos One. 6(6):e2114. http://doi.org/10.1371/journal.pone.0021143
Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK. 2011. Microsatellite markers: an overview of the recent progress in plants. Euphytica (2011) 177:309–334. http:/doi.org/10.1007/s10681-010-0286-9
Kalinowski, ST, Taper, ML & Marshall, TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16: 1099-1106. http://dx.doi.org/10.1111/j.1365-294x.2007.03089.x
Kasryno, F. 2015. Consulting Study 15: The economic impacts of palm oil in Indonesia. The High Carbon Stock Science Study. 31p.http://www.simedarbyplantation.com/sites/default/files/ sustainability/high-carbon-stock/consulting-reports/socio-economic/hcs-consulting-report-15-the-economic-impacts-of-palm-oil-in-Indonesia.pdf; (accessed Nov 18, 2019).
Larekeng S H, Maskromo I, Purwito A, Matjik N A and Sudarsono 2015a. Penyebaran polen berdasarkan analisis SSR membuktikan penyerbukan kelapa Dalam Kalianda Normal ke Kopyor. Bul. Palma 16 77-92. http://doi.org/10.21082/bp.v16n1.2015.77-92
Larekeng S H, Maskromo I, Purwito A, Mattjik N A and Sudarsono 2015b. Pollen dispersal and pollination patterns studies in pati kopyor coconut using molecular markers. Int. J. Coconut R & D (CORD) 31 46-60. http://doi.org/10.37833/cord.v31i1.70
Larekeng S H, Purwito A, Mattjik N A, and Sudarsono S 2018 Microsatellite and SNAP markers used for evaluating pollen dispersal on Pati tall coconuts and Xenia effect on the production of 'Kopyor'fruits IOP Conference Series: Earth and Environmental Science 157:012042. http://doi.org/10.1088/1755-1315/157/1/012042
Lebrun P, Baudouin L, Bourdeix R, Konan JL, Barker JHA, Aldam C, Herran A, Ritter E. 2001. Construction of a linkage map of the Rennell Island tall coconut type (Cocos nucifera L.) and QTL analysis for yield characters. Genome. 44:962-970. http://doi.org/10.1007/s00122-005-0123-z
Lima, EBC., Sousa CNS., Meneses LN., Ximenes NC., Santos Júnior MA.,Vasconcelos GS., Lima NBC., Patrocínio MCA., Macedo D., Vasconcelos SMM. 2015. Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Braz J Med Biol Res 48(11) 2015; 953–964p. http://dx.doi.org/10.1590/1414-431X20154773
Loiola CM, Azevedo AON, Diniz LEC, Aragão WM, Azevedo CD de O, Santos PHAD, Ramos HCC, Pereira MG, Ramos SRR. 2016. Genetic relationships among tall coconut palm (Cocos nucifera L.) accessions of the international coconut genebank for Latin America and the Caribbean (ICG-LAC), evaluated using microsatellite markers (SSRs). Plos One. https://doi.org/10.1371/journal.pone.0151309.
Mahayu WM., Taryono. 2019. Coconut (Cocos nucifera L.) diversity in Indonesia based on SSR molecular marker. Conference: 1st International Conference on Bioinformatics, Biotechnology, and Biomedical Engineering (Biomic 2018) April 2019. AIP Conference Proceedings 2099(1):020013. http://doi.org/10.1063/1.5098418
Martinez TR, Baudoin L, Berger A, Dollet M. 2010. Characterization of genetic diversity of tall coconut (Cocos nucifera L.) in the Dominican Republic using microsatellite (SSR) marker. Tree Genetics & Genomes. 6(1):73-81. http://doi.org/10.1007/S11295-009-0229-6.
Maskromo I, Tenda E T, Tulalo M A, Novarianto H, Sukendah, Sukma D and Sudarsono S 2015 Keragaman fenotipe dan genetik tiga varietas kelapa genjah Kopyor asal Pati Jawa Tengah. J Littri. 21 1-8. http://doi.org/10.21082/littri.v21n1.2015.1-8
Maskromo I, Novarianto H, Sukendah, Sukma D and Sudarsono S 2014 Keragaman komponen buah dan kualitas endosperma kelapa Dalam kopyor Kalianda dan kelapa Genjah kopyor Pati. Bul.Palma. 15 102-9. http://doi.org/10.21082/bp.v15n2.2014.102-109
Maskromo I., Novarianto, H., Sukma, D., Sudarsono, S. 2012. Potensi Hasil Plasma Nutfah Kelapa Kopyor Asal Kalianda, Pati, Sumenep dan Jember. Zuriat 23(2). https://doi.org/10.24198/ zuriat.v23i2.6878.
The Ministry of Trade of The Republic of Indonesia. 2017. Indonesian various coconut products. Export News Indonesia. (http://djpen.kemendag.go.id/app_frontend/admin /docs/publication/1561519014552.pdf, accessed: 23 November 2019)
Novarianto H, Maskromo I, Dinarti D and Sudarsono 2014 Production technology for Kopyor coconut seed nuts and seedlings in Indonesia Int. J. Coconut R & D (CORD) 30 31-40. http://doi.org/10.37833/cord.v30i2.77
Novarianto H and Lolong A A 2012 Peningkatan persentase buah kelapa kopyor melalui penyerbukan sendiri Bul. Palma 13 7-16. http://doi.org/10.21082/bp.v13n1.2012.7-16
Perera, SACN., 2014. Oil Palm and Coconut in Alien Gene Transfer in Crop Plants, Vol. 2: Achievements and Impacts. A. Pratap and J. Kumar (eds.), 231-252p. http://doi.org/10.1007/978-1-4614-9572-7_11.
Perera L, Russell R, Provan J, Powell W (2000). Use of microsatellite DNA markers to investigate the level of genetic diversity and population genetic structure of coconut (Cocos nucifera L.). Genome, 43: 15-21. http://doi.org/10.1139/g99-079
Perrier, X., Jacquemoud-Collet, J.P. (2006). DARwin software. http://darwin.cirad.fr/darwin
Pesik A, Effendi D, Novarianto H, Dinarti D, Sudarsono S. 2017. Development of SNAP markers based on nucleotide variability of WRKY genes in coconut and their validation using multiplex PCR. Biodiversitas. 18(2):465-475. doi: 10.13057/biodiv/d180204.
Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo Á and Lareu MV (2013) An overview of STRUCTURE: applications, parameter settings, and supporting software. Front. Genet. 4:98. http://doi.org/10.3389/fgene. 2013.00098
Pritchard JK, Stephens M, Donelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959. http://doi.org/10.1093/genetics/155.2.945
Rahayu, MS., Setiawan, A., Maskromo, I., Purwito A., Sudarsoso S. 2019. Seleksi Pendonor Serbuk Sari Sifat Kuantitas Endosperma Skor Tinggi pada Kelapa Dalam Kopyor. J. Agron. Indonesia 47(1):97-104. http://doi.org/10.24831/jai.v47i1.21116
Ribeiro FE, Baudouin L, Lebrun P, Chaves LJ, Brondani C, Zucchi MI, Vencovsky R. 2010. Population structues of Brazillian tall coconut (Cocos nucifera L.) by microsatellite markers. Gen and Mol Biol. 33(4): 696-102. http://doi.org/??? atau alamat website publikasinya?
Rinawati, DY, Reflinur, Dinarti, Sudarsono. 2021. Genetic diversity of sugar palm (Arenga pinnata)derived from nine regions in Indonesiabasedon SSR markers. Biodiversitas 22(9) http://doi.org/10.13057/biodiv/d220919
Sudarsono, Maskromo I, Dinarti D, Rahayu M S, Sukma D, Yuliasti, Hossang M L A and Novarianto H 2015 Status penelitian dan pengembangan kelapa kopyor di Indonesia Prosiding Konferensi Nasional Kelapa (KNK) 8 53-64. http://ejurnal.litbang.pertanian.go.id/index.php/palma/article/download/8760/7737
Sudarsono, Novarianto H and Maskromo I 2011 Diversity of endosperm quality among Kalianda tall coconut Poster presented at International Seminar on Natural Resources, Climate Change, and Food Security (ISNAR C2FS) (Surabaya: UPN Jatim). https://pmblab.wordpress.com/2011/07/22/isnar-c2fs-2011-abstract-2/
Shilpa Swarup,Edward J. Cargill,Kate Crosby,Lex Flagel,Joel Kniskern,Kevin C. Glenn. 2020. Genetic diversity is indispensable for plant breeding to improve crops. Crop Science 61(2):839-852. https://doi.org/10.1002/csc2.20377.
Teulat B, Aldam C, Trehim P, Lebrun P, Barker J, Arnold G, Karp A, Baudouin L, Rognon F (2000). An analysis of genetic diversity in coconut (Cocos nucifera L.) population from across the geographical range using sequence-tagged microsatellites (SSRs) and (AFLPs). Theor. Appl. Genet., 100: 764-771. https://doi.org/10.1007/s001220051350
Ting NC., Jansen J., Mayes S., Massawe F., Sambanthamurthi R., Ooi LC., Chin CW., Arulandoo X, Seng TY., Alwee SSRS., Ithnin M., and Singh R. 2014. High-density SNP and SSR-based genetic maps of two independent oil palm hybrids. BMC Genomics 15(309). http://doi.org/10.1186/1471-2164-15-309.
Verma V, Bhardwaj A, Rathi S, Raja R.B. 2012. Potential antimicrobial agent from Cocos nucifera mesocarp extract: Development of a New Generation Antibiotic. Int. Res. J. Biol. Sci 1: 48–54. http://www.isca.in/IJBS/Archive/v1/i2/9.ISCA-JBS-2012-057%2520Done.php.
Yao SDM, Konan KJL, Pokou ND, KonanKJN, Issali AE, Sie RS, Zoro BIA. 2013. Assessment of the genetic diversity conservation in three tall coconut (Cocos nucifera L.) accessions regenerated by controlled pollination, using microsatellite markers. African Journal of Biotechnology 12(20):2808-2815. http://doi.org/10.5897/AJB11.3608
Zalapa J.E., Cuevas H., Zhu H., Steffan S., Senalik D., Zeldin E., Mccown B., Harbut R., Simon P. 2012 Using Next-Generation Sequencing Approaches to Isolate Simple Sequence Repeat (SSR) Loci in The Plant sciences. American Journal of Botany 99(2): 193–208. http://www.jstor.org/stable/41415354.
Zhu H., Senalik D., McCown BH., Zeldin EL., Speers J., Hyman J., Bassil N., et al. 2011. Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.). Theoretical and Applied Genetics http://doi.org/10.1007/s00122-011-1689-2.

Most read articles by the same author(s)

<< < 1 2 3 4 > >>