Novel microbial transformation of Andrographis paniculata by Aspergillus oryzae K1A

##plugins.themes.bootstrap3.article.main##

RINI HANDAYANI
https://orcid.org/0000-0002-1893-0543
ACHMAD DINOTO
https://orcid.org/0000-0002-9182-7665
MARIA BINTANG
https://orcid.org/0000-0003-0152-4888

Abstract

Abstract. Handayani R, Dinoto A, Bintang M. 2021. Novel microbial transformation of Andrographis paniculata by Aspergillus oryzae K1A. Biodiversitas 23: 110-117. Microbial transformation is a powerful technique for altering organic substances with complex chemical structures. Aspergillus has been found to produce secondary metabolites from biotransformation products of various medicinal plants. Andrographis paniculata Nees. or sambiloto is an Asian traditional medicinal plant. This study aimed to investigate the microbial transformation of A. paniculata by Aspergillus oryzae K1A. The leaf of A. paniculata was fermented by A. oryzae K1A. Microorganisms were transferred into the ?asks from the slants. The ?asks were placed on rotary shakers, operating at 120 rpm at 37°C. 0.2ml of the substrate solution was added into the fermentation ?asks and these ?asks were maintained under the same conditions and sampling was carried out each day of 0, 1, 3, 7 and 14. The samples were analyzed by TLC, HPLC, and the LC-MS/MS method to evaluate the biotransformation products. The TLC analysis showed different spots of A. paniculata fermented and non-fermented on days of 7 to 14 th and the Rf value was disappeared. The peaks of A. paniculata fermented and non-fermented were relatively similar on days of 0 to 1 incubation and the concentrations of A. paniculata fermented and non-fermented were increased during incubation time in the HPLC analysis. The chromatograms LC-MS/MS study showed different peaks between A. paniculata fermentation and non-fermentation on 3 to 14 days of incubation, and new secondary metabolites picrasidine K (C18H23N3O2); bufotalinin (C24H30O6); and ?-carboline were shown in the table of A. paniculata fermented.

##plugins.themes.bootstrap3.article.details##

References
Amare MG, Keller NP. 2014. Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genet Biol. 66:11–18. doi:10.1016/j.fgb.2014.02.008. http://dx.doi.org/ 10.1016/j.fgb.2014.02.008.
Caesar LK, Kelleher NL, Keller NP. 2020. In the fungus where it happens: History and future propelling Aspergillus nidulans as the archetype of natural products research. Fungal Genet Biol. 144:103477. doi:10.1016/j.fgb.2020.103477. https://doi.org/10.1016/j.fgb.2020.103477.
Cai Q, Liang XW, Wang SG, Zhang JW, Zhang X, You SL. 2012. Ring-closing metathesis/ isomerization/pictet-spengler cascade via ruthenium/chiral phosphoric acid sequential catalysis. Org Lett. 14(19):5022–5025. doi:10.1021/ol302215u.
Devi N, Kumar S, Pandey SK, Singh V. 2018. 1(3)-Formyl-?-carbolines: Potential Aldo-X Precursors for the Synthesis of ?-Carboline-Based Molecular Architectures. Asian J Org Chem. 7(1):6–36. doi:10.1002/ajoc.201700477.
He X, Wang Y, Hu H, Wu Y, Zeng X. 2011. Novel bioconversion products of andrographolide by Aspergillus ochraceus and their cytotoxic activities against human tumor cell lines. J Mol Catal B Enzym. 68(1):89–93. doi:10.1016/j.molcatb.2010.09.017. http://dx.doi.org/ 10.1016/ j.molcatb. 2010.09.017.
He X, Zeng X, Hu H, Wu Y. 2010. Cytotoxic biotransformed products from andrographolide by Rhizopus stolonifer ATCC 12939. J Mol Catal B Enzym. 62(3–4):242–247. doi:10.1016/j.molcatb. 2009.11.002.
He Y, Wang B, Chen W, Cox RJ, He J, Chen F. 2018. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol Adv. 36(3):739–783. doi: 10.1016/j.biotechadv.2018.02.001.
Jin FJ, Hu S, Wang BT, Jin L. 2021. Advances in Genetic Engineering Technology and Its Application in the Industrial Fungus Aspergillus oryzae. Front Microbiol. 12(February):1–14. doi:10.3389 /fmicb.2021.644404.
Kawauchi M, Nishiura M, Iwashita K. 2013. Fungus-specific sirtuin HstD coordinates secondary metabolism and development through control of LaeA. Eukaryot Cell. 12(8):1087–1096. doi: 10.1128/EC.00003-13.
Kurzawa M, Filipiak-Szok A, K?odzi?ska E, Sz?yk E. 2015. Determination of phytochemicals, antioxidant activity and total phenolic content in Andrographis paniculata using chromatographic methods. J Chromatogr B Anal Technol Biomed Life Sci. 995–996:101–106. doi: 10.1016/ j.jchromb.2015.05.021.
Laine AE, Lood C, Koskinen AMP. 2014. Pharmacological importance of optically active tetrahydro-?-carbolines and synthetic approaches to create the C1 stereocenter. Molecules. 19(2):1544–1567. doi:10.3390/molecules19021544.
Marui J, Ohashi-Kunihiro S, Ando T, Nishimura M, Koike H, Machida M. 2010. Penicillin biosynthesis in Aspergillus oryzae and its overproduction by genetic engineering. J Biosci Bioeng. 110(1):8–11. doi:10.1016/j.jbiosc.2010.01.001. http://dx.doi.org/10.1016/j.jbiosc.2010.01.001.
Mishra PK, Singh RK, Gupta A, Chaturvedi A, Pandey R, Tiwari SP, Mohapatra TM. 2013. Antibacterial activity of Andrographis paniculata (Burm. f.) Wall ex Nees leaves against clinical pathogens. J Pharm Res. 7(5):459–462. doi:10.1016/j.jopr.2013.05.009.
Niu GQ, Tan HR. 2013. Biosynthesis and regulation of secondary metabolites in microorganisms. Sci China Life Sci. 56(7):581–583. doi:10.1007/s11427-013-4501-5.
Okhuarobo A, Ehizogie Falodun J, Erharuyi O, Imieje V, Falodun A, Langer P. 2014. Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: A review of its phytochemistry and pharmacology. Asian Pacific J Trop Dis. 4(3):213–222. doi:10.1016/S2222-1808(14)60509-0.
De Oliveira Silva E, Furtado NAJC, Aleu J, Collado IG. 2013. Terpenoid biotransformations by Mucor species. Phytochem Rev. 12(4):857–876. doi:10.1007/s11101-013-9313-5.
Ramya Premanath and N. Lakshmi Devi. 2011. Antibacterial, antifungal and antioxidant activities of Andrographis paniculata Nees. leaves. Int J Pharm Sci Res. 2(8):2091–2099.
Sanchez JF, Somoza AD, Keller NP, Wang CCC. 2012. Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep. 29(3):351–371. doi:10.1039/c2np00084a.
Sheih IC, Fang TJ, Wu TK, Chang CH, Chen RY. 2011. Purification and properties of a novel phenolic antioxidant from radix astragali fermented by aspergillus oryzae M29. J Agric Food Chem. 59(12): 6520–6525. doi:10.1021/jf2011547.
Shinohara Y, Kawatani M, Futamura Y, Osada H, Koyama Y. 2016. An overproduction of astellolides induced by genetic disruption of chromatin-remodeling factors in Aspergillus oryzae. J Antibiot (Tokyo). 69(1):4–8. doi:10.1038/ja.2015.73.
Sivananthan M and ME. 2013. Medicinal and pharmacological properties of Andrographis paniculata Department of Biomedical Science , Faculty of Biomedicine and Health , ASIA Metropolitan University, Sivananthan and Elamaran Sivananthan and Elamaran. Int J Biomol Biomed. 3(2):1–12.
Solomon Jeeva JJ. 2014. Andrographis paniculata: A Review of its Traditional Uses, Phytochemistry and Pharmacology. Med Aromat Plants. 03(04). doi:10.4172/2167-0412.1000169.
Song YX, Liu SP, Jin Z, Qin JF, Jiang ZY. 2013. Qualitative and quantitative analysis of Andrographis paniculata by rapid resolution liquid chromatography/time-of-flight mass spectrometry. Molecules. 18(10):12192–12207. doi:10.3390/molecules181012192.
De Sousa IP, Sousa Teixeira M V., Jacometti Cardoso Furtado NA. 2018. An overview of biotransformation and toxicity of diterpenes. Molecules. 23(6). doi:10.3390/molecules23061387.
Sule A, Ahmed QU, Samah OA, Omar MN. 2011. Bacteriostatic and bactericidal activities of Andrographis paniculata extracts on skin disease causing pathogenic bacteria. J Med Plants Res. 5(1):7–14.
Valdiani A, Talei D, Lattoo SK, Ortiz R, Rasmussen SK, Batley J, Rafii MY, Maziah M, Sabu KK, Abiri R, et al. 2017. Genoproteomics-assisted improvement of Andrographis paniculata: toward a promising molecular and conventional breeding platform for autogamous plants affecting the pharmaceutical industry. Crit Rev Biotechnol. 37(6):803–816. doi:10.1080/ 07388551. 2016. 1260525.
Wakai S, Arazoe T, Ogino C, Kondo A. 2017. Future insights in fungal metabolic engineering. Bioresour Technol. 245(April):1314–1326. doi:10.1016/j.biortech.2017.04.095. http://dx.doi.org/ 10.1016/j.biortech.2017.04.095.
Wang JH, Wang ZT, Wang LL, Wang ZJ, Ma Z, Chou GX, Hu ZB, Li WK. 2014. Biotransformation of neoandrographolide by endophytic fungus from dendrobium officinale kimura et migo. Asian J Chem. doi:10.14233/ajchem.2014.15936.
Wang Y, Chen L, Zhao F, Liu Z, Li J, Qiu F. 2011. Microbial transformation of neoandrographolide by Mucor spinosus (AS 3.2450). J Mol Catal B Enzym. 68(1):83–88. doi:10.1016/ j.molcatb.2010.09.016.
Wen YL, Yan LP, Chen CS. 2013. Effects of fermentation treatment on antioxidant and antimicrobial activities of four common Chinese herbal medicinal residues by Aspergillus oryzae. J Food Drug Anal. 21(2):219–226. doi:10.1016/j.jfda.2013.05.013.

Most read articles by the same author(s)