Profile variation of bla genes among non-lactose fermenting Gram-negative bacilli between clinical and environmental isolates of Dr. Soetomo Hospital, Surabaya, Indonesia

##plugins.themes.bootstrap3.article.main##

PRISTIAWAN NAVY ENDRAPUTRA
KUNTAMAN KUNTAMAN
EDDY BAGUS WASITO
TOSHIRO SHIRAKAWA
DADIK RAHARJO
WAHYU SETYARINI

Abstract

Abstract. Endraputra PN, Kuntaman K, Wasito EB, Shirakawa T, Raharjo D, Setyarini W. 2021. Profile variation of bla genes among non-lactose fermenting Gram negative bacilli between clinical and environmental isolates of Dr. Soetomo Hospital, Surabaya, Indonesia. Biodiversitas 22: 5047-5054. Carbapenem-resistant non-fermenter Gram-negative bacilli are notorious opportunistic pathogens in hospitalized patients and hospital environments. This study explored the carbapenemase gene among non-fermenter Gram-negative bacilli from hospital wastewater and clinical isolates in Dr. Soetomo Hospital, Surabaya, Indonesia. All samples were screened on MacConkey agar with meropenem 2 µg/ml and gene detected by Multiplex PCR. All samples were screened on MacConkey agar with meropenem 2 µg/ml and gene detected by Multiplex PCR. A total of 121 isolates consisted of 76 clinical (41 carbapenem-resistant Acinetobacter baumannii and 35 carbapenem-resistant Pseudomonas aeruginosa), 45 environmental isolates (6 carbapenem-resistant Pseudomonas aeruginosa and 32 carbapenem-resistant Pseudomonas spp.), and 7 screening samples (all CRPAs). Clinical isolates carbapenemase genes were identified, blaOXA-23-like 21 (28%), blaOXA-24-like 30 (39%), blaNDM-1 1 (1%), and blaIMP-1 6 (8%) while environmental isolates were blaOXA-23-like 5 (13%), blaOXA-24-like 4 (11%), blaOXA-48-like 2 (5%), blaNDM-1 13 (34%), blaVIM 12 (32%), and blaIMP-1 4 (11%). Rectal swab screening specimens presented blaOXA-23-like 3 (43%), blaOXA-24-like 3 (43%), and blaNDM-1 1 (14%). The carbapenemase gene pattern was different between clinical and environmental isolates. The blaOXA-23-like and blaOXA-24-like were most prevalent among in both clinical and wastewater, while blaVIM was mostly in wastewater. The presence of carbapenem-resistant non-fermenter Gram-negative bacilli carrying carbapenemase genes in hospital effluents indicated that the community river was seeded with an antimicrobial resistance gene.

##plugins.themes.bootstrap3.article.details##

References
Abouelfetouh A, Torky AS, Aboulmagd E. 2019. Phenotypic and genotypic characterization of carbapenem-resistant Acinetobacter baumannii isolates from Egypt. Antimicrob Resist Infect Control 8(185): 1–9. https://doi.org/10.1186/s13756-019-0611-6.
Asfaw T. 2018. Review on hospital wastewater as a source of emerging drug resistance pathogens. J Res Environ Sci Toxicol 7(2): 47–52. https://dx.doi.org/10.1016%2Fj.jece.2020.104812.
Azimi L, Fallah F, Karimi A, Shirdoust M, Azimi T, Sedighi I, Rahbar M, Armin S. 2020. Survey of various carbapenem-resistant mechanisms of Acinetobacter baumannii and Pseudomonas aeruginosa isolated from clinical samples in Iran. Iran J Basic Med Sci 23(11): 1396–1400. https://doi.org/10.22038/ijbms.2020.44853.10463.
Beigverdi R, Sattari-Maraji A, Emaneini M, Jabalameli F. 2019. Status of carbapenem-resistant Acinetobacter baumannii harboring carbapenemase: first systematic review and meta-analysis from Iran. Infect Genet Evol 73: 433–43. https://doi.org/10.1016/j.meegid.2019.06.008.
Botelho J, Grosso F, Peixe L. 2019. Antibiotic resistance in Pseudomonas aeruginosa - mechanisms, epidemiology and evolution. Drug Resist Updat 44: 26–47. https://doi.org/10.1016/j.drup.2019.07.002.
Bush K, Bradford PA. 2019. Interplay between ?-lactamases and new ?-lactamase inhibitors. Nat Rev Microbiol 17(5): 295–306. https://doi.org/10.1038/s41579-019-0159-8.
Chatterjee S, Datta S, Roy S, Ramanan L, Saha A, Viswanathan R, Som T, Basu S. 2016. Carbapenem resistance in Acinetobacter baumannii and other Acinetobacter spp. causing neonatal sepsis: focus on NDM-1 and its linkage to ISAba125. Front Microbiol 7: 1–13. https://doi.org/10.3389/fmicb.2016.01126.
Chen Y, Yang Y, Liu L, Qiu G, Han X, Tian S, Zhao J, Chen F, Grundmann H, Li H, Sun J, Han L. 2018. High prevalence and clonal dissemination of OXA-72-producing Acinetobacter baumannii in a Chinese Hospital: a Cross sectional study. BMC Infect Dis 18(491): 1–11. https://doi.org/10.1186/s12879-018-3359-3.
De Vos D, Lim Jr. A, Pirnay JP, Struelens M, Vandenvelde C. Duinslaeger L, Vanderkelen A, Cornelis P. 1997. Direct detection and identification of Pseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, oprI and oprL. J Clin Microbiol 35(6): 1259–99. https://doi.org/10.1128/jcm.35.6.1295-1299.1997.
Du X, Xu X, Yao J, Deng K, Chen S, Shen Z, Yang L, Feng G. 2019. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: a systematic review and meta-analysis. Am J Infect Control 47(9): 1140¬–5. https://doi.org/10.1016/j.ajic.2019.03.003.
Falodun OI, Akinbamiro TF, Rabiu AG. 2019. Hospital wastewater: reservoir of antibiotic resistant Pseudomonas strains in Ibadan, Nigeria. Emer Life Sci Res 5(1): 1–7. https://doi.org/10.31783/elsr.2019.5117.
Ferreira AE, Marchetti DP, De Oliveira LM, Gusatti CS, Fuentefria DB, Corção G. 2011. Presence of OXA-23-producing isolates of Acinetobacter baumannii in wastewater from hospitals in Southern Brazil. Microb Drug Resist 17(2): 221–7. https://doi.org/10.1089/mdr.2010.0013.
Fouz N, Pangesti KNA, Yasir M, Al-Malki AL, Azhar EI, Hill-Cawthorne GA, El Ghany MA. 2020. The contribution of wastewater to the transmission of antimicrobial resistance in the environment: implications of mass gathering settings. Trop Med Infect Dis 5(1): 1–25. https://doi.org/10.3390/tropicalmed5010033.
Gholami A, Majidpour A, Talebi-Taher M, Boustanshenas M, Adabi M. 2016. PCR-based assay for the rapid and precise distinction of Pseudomonas aeruginosa from other Pseudomonas species recovered from burns patients. J Prev Med Hyg 57(2): 81–5. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4996044/.
Haller L, Chen H, Ng C, Le TH, Koh TH, Barkham T, Sobsey M, Gin KYH. 2018. Occurrence and characteristics of extended-spectrum ß-lactamase- and carbapenemase-producing bacteria from hospital effluents in Singapore. Sci Total Environ 615: 1119–25. https://doi.org/10.1016/j.scitotenv.2017.09.217.
Higgins PG, Wisplinghoff H, Krut O, Seifert H. 2007. A PCR-based method to differentiate between Acinetobacter baumannii and Acinetobacter genomic species 13TU. Clin Microbiol Infect 13(12): 1199–201. https://doi.org/10.1111/j.1469-0691.2007.01819.x.
Higgins PG., Lehmann M, Wisplinghoff H, Seifert H. 2010. gyrB multiplex PCR to differentiate between Acinetobacter calcoaceticus and Acinetobacter genomic species 3. J Clin Microbiol 48(12): 4592–4. https://doi.org/10.1128/jcm.01765-10.
Kateete DP, Nakanjako R, Namugenyi J, Erume J, Joloba ML, Najjuka CF. 2016. Carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii at Mulago Hospital in Kampala, Uganda (2007-2009). Springerplus 5(1308): 1–11. https://doi.org/10.1186/s40064-016-2986-7.
Kateete DP, Nakanjako R, Okee M, Joloba ML, Najjuka CF. 2017. Genotypic diversity among multidrug resistant Pseudomonas aeruginosa and Acinetobacter species at Mulago Hospital in Kampala, Uganda. BMC Res Notes 10(284): 1–10. https://doi.org/10.1186/s13104-017-2612-y.
Kuntaman K, Shigemura K, Osawa K, Kitagawa K, Sato K, Yamada N, Nishimoto K, Yamamichi F, Rahardjo D, Hadi U, Mertaniasih NM, Kinoshita S, Fujisawa M, Shirakawa T. 2018. Occurrence and characterization of carbapenem-resistant Gram-negative bacilli: a collaborative study of antibiotic-resistant bacteria between Indonesia and Japan. Int J Urol 2018; 25(11): 966–72. https://doi.org/10.1111/iju.13787.
Li S, Jia X, Li C, Zou H, Guo Y, Zhang L. Carbapenem-resistant and cephalosporin-susceptible Pseudomonas aeruginosa: a notable phenotype in patients with bacteremia. Infect Drug Resist 11: 1225–35. https://doi.org/10.2147/idr.s174876.
Marathe NP, Berglund F, Razavi M, Pal C, Dröge J, Samant S, Kristiansson E, Larsson J. 2019. Sewage effluent from an Indian Hospital harbors novel carbapenemases and integron-borne antibiotic resistance genes. Microbiome 7(97): 1–11. https://doi.org/10.1186/s40168-019-0710-x.
Miranda CC, de Filippis I, Pinto LH, Coelho-Souza T, Bianco K, Cacci LC, Picão RC, Clementino MM. 2015. Genotypic characteristics of multidrug-resistant Pseudomonas aeruginosa from hospital wastewater treatment plant in Rio De Janeiro, Brazil. J Appl Microbiol 115(6): 1276–86. https://doi.org/10.1111/jam.12792.
Moradali MF, Ghods S, Rehm BHA. 2017. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7: 1–29. https://doi.org/10.3389/fcimb.2017.00039.
Motbainor H, Bereded F, Mulu W. 2020. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: a cross-sectional study. BMC Infect Dis 20(92): 1–11. https://doi.org/10.1186/s12879-020-4811-8.
Nishio H, Komatsu M, Shibata N, Shimakawa K, Sueyoshi N, Ura T, Satoh K, Toyokawa M, Nakamura T, Wada Y, Orita T, Kofuku T, Yamasaki K, Sakamoto M, Kinoshita S, Aihara M, Arakawa Y. 2004. Metallo-?-lactamase-producing Gram-negative bacilli: laboratory-based surveillance in cooperation with 13 clinical laboratories in the Kinki Region of Japan. J Clin Microbiol 42(11): 5256–63. https://doi.org/10.1128/jcm.42.11.5256-5263.2004.
Nordmann P, Poirel L. 2002. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect 8(6): 321–31. https://doi.org/10.1046/j.1469-0691.2002.00401.x.
Pfeifer Y, Wilharm G, Zander E, Wichelhaus TA, Göttig S, Hunfeld KP, Seifert H, Witte W, Higgins PG. 2011. Molecular characterization of blaNDM-1 in an Acinetobacter baumannii strain isolated in Germany in 2007. J Antimicrob Chemoter 66(9): 1998–2001. https://doi.org/10.1093/jac/dkr256.
Poirel L, Postron A, Nordmann P. 2012. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 67(7): 1597–606. https://doi.org/10.1093/jac/dks121.
Ranjbar R, Zayeri S, Afshar D, Farshad S. 2019. Detection of OXA beta lactamases among clinical isolates of Acinetobacter baumannii isolated from Tehran Hospitals, Iran. Open Microbiol J 13: 68–72. http://dx.doi.org/10.2174/1874285801913010068.
Shams S, Hashemi A, Esmkhani M, Kermani S, Shams E, Piccirillo A. 2018. Imipenem resistance in clinical Escherichia coli from Qom, Iran. BMC Res Notes 11(314): 1–5. https://doi.org/10.1186/s13104-018-3406-6.
Spindler A, Otton LM, Fuentefria DB, Corção G. 2012. Beta-lactams resistance and presence of class 1 integron in Pseudomonas spp. isolated from untreated hospital effluents in Brazil. Antonie Van Leeuwenhoek 102(1): 73–81. https://doi.org/10.1007/s10482-012-9714-2.
Suwantarat N, Carroll KC. 2016. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia. Antimicrob Resist Infect Control 5(15): 1–8. https://dx.doi.org/10.1186%2Fs13756-016-0115-6.
Taee SR, Khansarinejad B, Abtahi H, Najafimosleh M, Ghaznavi-Rad E. 2014. Detection of algD, oprL and exoA genes by new specific primers as an efficient, rapid and accurate procedure for direct diagnosis of Pseudomonas aeruginosa strains in clinical samples. Jundishapur J Microbiol 7(10): 1–6. https://doi.org/10.5812/jjm.13583.
Tafreshi N, Babaeekhou L, Ghane M. 2019. Antibiotic resistance pattern of Acinetobacter baumannii from burns patients: increase in prevalence of blaOXA-24-like and blaOXA-58-like genes. Iran J Microbiol 11(6): 502–9. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc7048957/.
Vrancianu CO, Gheorghe I, Czobor IB, Chifiriuc MC. 2020. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii. Microorganisms 8(6): 1–40. https://doi.org/10.3390/microorganisms8060935.
Wang TH, Leu YS, Wang NY, Liu CP, Yan TR. 2018. Prevalence of different carbapenemase genes among carbapenem-resistant Acinetobacter Baumannii in blood isolates in Taiwan. Antimicrob Resist Infect Control 7(123): 1–8. https://doi.org/10.1186/s13756-018-0410-5.
Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SGB, Livermore DM. 2006. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27(4): 351–3. https://doi.org/10.1016/j.ijantimicag.2006.01.004.
Zhang L, Ma X, Luo L, Hu N, Duan J, Tang Z, Zhong R, Li Y. 2020. The prevalence and characterization of extended-spectrum ?-lactamase- and carbapenemase-producing bacteria from hospital sewage, treated effluents and receiving rivers. Int J Environ Res Public Health 17(4): 1–13. https://doi.org/10.3390/ijerph17041183.
Zhang S, Huang J, Zhao Z. Cao Y, Li B. 2020. Hospital wastewater as a reservoir for antibiotic resistance genes: a meta-analysis. Front Public Health 8: 1–12. https://doi.org/10.3389/fpubh.2020.574968.

Most read articles by the same author(s)